Suppr超能文献

利用庞加莱嵌入学习医学概念的上下文层次结构以阐明表型。

Learning Contextual Hierarchical Structure of Medical Concepts with Poincairé Embeddings to Clarify Phenotypes.

作者信息

Beaulieu-Jones Brett K, Kohane Isaac S, Beam Andrew L

机构信息

Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA dbmi.hms.harvard.edu.

出版信息

Pac Symp Biocomput. 2019;24:8-17.

Abstract

Biomedical association studies are increasingly done using clinical concepts, and in particular diagnostic codes from clinical data repositories as phenotypes. Clinical concepts can be represented in a meaningful, vector space using word embedding models. These embeddings allow for comparison between clinical concepts or for straightforward input to machine learning models. Using traditional approaches, good representations require high dimensionality, making downstream tasks such as visualization more difficult. We applied Poincaré embeddings in a 2-dimensional hyperbolic space to a large-scale administrative claims database and show performance comparable to 100-dimensional embeddings in a euclidean space. We then examine disease relationships under different disease contexts to better understand potential phenotypes.

摘要

生物医学关联研究越来越多地使用临床概念,特别是将临床数据存储库中的诊断代码作为表型。临床概念可以使用词嵌入模型在有意义的向量空间中表示。这些嵌入允许对临床概念进行比较,或直接输入到机器学习模型中。使用传统方法,良好的表示需要高维度,这使得诸如可视化等下游任务更加困难。我们将二维双曲空间中的庞加莱嵌入应用于一个大规模的行政索赔数据库,并展示了与欧几里得空间中100维嵌入相当的性能。然后,我们在不同的疾病背景下研究疾病关系,以更好地理解潜在的表型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6def/6417814/d0a4db1b5683/nihms-999764-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验