Suppr超能文献

三重打击完美系统发育。

A Third Strike Against Perfect Phylogeny.

机构信息

Delft Institute of Applied Mathematics, Delft University of Technology, Van Mourik Broekmanweg 6, 2628 XE, Delft, The Netherlands.

Department of Data Science and Knowledge Engineering (DKE), Maastricht University, Bouillonstraat 8-10 6211 LH, Maastricht, The Netherlands.

出版信息

Syst Biol. 2019 Sep 1;68(5):814-827. doi: 10.1093/sysbio/syz009.

Abstract

Perfect phylogenies are fundamental in the study of evolutionary trees because they capture the situation when each evolutionary trait emerges only once in history; if such events are believed to be rare, then by Occam's Razor such parsimonious trees are preferable as a hypothesis of evolution. A classical result states that 2-state characters permit a perfect phylogeny precisely if each subset of 2 characters permits one. More recently, it was shown that for 3-state characters the same property holds but for size-3 subsets. A long-standing open problem asked whether such a constant exists for each number of states. More precisely, it has been conjectured that for any fixed number of states $r$ there exists a constant $f(r)$ such that a set of $r$-state characters $C$ has a perfect phylogeny if and only if every subset of at most $f(r)$ characters has a perfect phylogeny. Informally, the conjecture states that checking fixed-size subsets of characters is enough to correctly determine whether input data permits a perfect phylogeny, irrespective of the number of characters in the input. In this article, we show that this conjecture is false. In particular, we show that for any constant $t$, there exists a set $C$ of $8$-state characters such that $C$ has no perfect phylogeny, but there exists a perfect phylogeny for every subset of at most $t$ characters. Moreover, there already exists a perfect phylogeny when ignoring just one of the characters, independent of which character you ignore. This negative result complements the two negative results ("strikes") of Bodlaender et al. (1992,2000). We reflect on the consequences of this third strike, pointing out that while it does close off some routes for efficient algorithm development, many others remain open.

摘要

完美的系统发育树在进化树的研究中是基本的,因为它们捕捉到了这样一种情况,即每个进化特征在历史上只出现一次;如果认为这样的事件很少见,那么根据奥卡姆剃刀原理,这种简约的树作为进化的假设是可取的。一个经典的结果表明,2 状态字符允许完美的系统发育树,如果每个 2 字符的子集只允许一个。最近,人们发现对于 3 状态字符,同样的性质成立,但对于大小为 3 的子集。一个长期存在的开放性问题是,对于每个状态数量是否存在这样的常数。更准确地说,人们推测对于任何固定数量的状态 r,存在一个常数 f(r),使得一组 r 状态字符 C 具有完美的系统发育树,如果且仅当最多 f(r)个字符的每个子集都具有完美的系统发育树。非正式地说,这个猜想表明,检查字符的固定大小子集足以正确确定输入数据是否允许具有完美的系统发育树,而与输入字符的数量无关。在本文中,我们证明了这个猜想是错误的。具体来说,我们证明了对于任何常数 t,都存在一个由 8 个状态字符组成的集合 C,使得 C 没有完美的系统发育树,但对于最多 t 个字符的每个子集都存在完美的系统发育树。此外,当忽略一个字符时,已经存在一个完美的系统发育树,而与忽略哪个字符无关。这个否定的结果补充了 Bodlaender 等人的两个否定结果(1992 年,2000 年)。我们反思了这第三个打击的后果,指出虽然它确实关闭了一些高效算法开发的途径,但还有许多其他途径仍然开放。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30eb/6701462/150a70367ae2/syz009f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验