Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553, Japan.
Phys Chem Chem Phys. 2019 Mar 27;21(13):7045-7052. doi: 10.1039/c9cp00223e.
The development of Zn-air batteries with a high energy density of 1350 W h kg-1 is one of the breakthroughs required to achieve a low carbon society. However, morphology control of the Zn negative electrode during charge/discharge (Zn-deposition/stripping) is essential for practical application. Considering the manufacturing process, a simple strategy is preferable. Herein, we employed surfactants as an inhibitor of the formation of mossy and dendrite Zn structures, and studied electrochemical Zn growth from the perspective of the electric charge of the surfactant. Even by using an additive free electrolyte of 0.25 M ZnO + 4 M KOH and with 1 mM sodium dodecyl sulfate (SDS: anionic surfactant) or polyacrylic acid (PAA: non-ionic surfactant), mossy and dendrite formations were unavoidable irrespective of the current density. On the other hand, a cationic surfactant, trimethyloctadecylammonium chloride (STAC), suppressed the shape change and resulted in a smooth and dense morphology. Zeta potential measurements, kinetic current densities observed from Tafel plots, and constant potential electrolysis indicate that quaternary ammonium cations (STAC) with bulky size adsorb onto protrusions which are the cause of shape change and suppress Zn deposition in the region to promote lateral growth. Although the adsorption of STAC increased the average overvoltage for Zn-deposition/stripping in a symmetric Zn|Zn cell under a current density of 10 mA cm-2, significantly stable behavior continued for 200 h. In contrast, the overvoltage of the additive free system suddenly increased after 156 h, associated with the accumulation of insulating ZnO and Zn(OH)2 formed on the Zn surface. In charge-discharge tests using an asymmetric Cu|Zn cell, the coulombic efficiency in the additive free electrolyte was less than 95%, whereas the addition of STAC at 1 mM achieved superior cycling performance without any capacity loss originating from the generation of dead Zn (electrical isolation). These results demonstrate that the addition of STAC is a promising method of controlling the Zn morphology.
开发具有 1350 W h kg-1 高能量密度的锌空气电池是实现低碳社会所必需的突破之一。然而,在充放电过程中(锌沉积/剥离)对锌负极的形态控制对于实际应用至关重要。考虑到制造工艺,简单的策略是优选的。在此,我们采用表面活性剂作为抑制苔藓和枝晶锌结构形成的抑制剂,并从表面活性剂的电荷量的角度研究了电化学锌的生长。即使在使用不含添加剂的 0.25 M ZnO + 4 M KOH 电解液,且添加 1 mM 十二烷基硫酸钠(阴离子表面活性剂)或聚丙烯酸(非离子表面活性剂)的情况下,无论电流密度如何,都不可避免地会形成苔藓和枝晶。另一方面,阳离子表面活性剂三甲基十八烷基氯化铵(STAC)抑制了形貌变化,导致形貌变得光滑致密。动电位测量、从塔菲尔图观察到的动力学电流密度以及恒电位电解表明,具有较大尺寸的季铵阳离子(STAC)吸附在突起上,突起是形貌变化的原因,并抑制了锌在该区域的沉积,从而促进了侧向生长。虽然在电流密度为 10 mA cm-2 的对称 Zn|Zn 电池中,STAC 的吸附增加了 Zn 沉积/剥离的平均过电位,但在 200 h 内仍保持着显著稳定的行为。相比之下,在无添加剂体系中,过电位在 156 h 后突然增加,这与在锌表面形成的绝缘 ZnO 和 Zn(OH)2 的积累有关。在使用不对称 Cu|Zn 电池的充放电测试中,无添加剂电解液的库仑效率低于 95%,而在 1 mM 时添加 STAC 则实现了优异的循环性能,没有因生成死锌(电隔离)而导致的容量损失。这些结果表明,添加 STAC 是控制锌形态的一种很有前途的方法。