Suppr超能文献

使用基因表达相互作用网络特征选择预测流感疫苗抗体反应的多层次模型

Multi-Level Model to Predict Antibody Response to Influenza Vaccine Using Gene Expression Interaction Network Feature Selection.

作者信息

Parvandeh Saeid, Poland Greg A, Kennedy Richard B, McKinney Brett A

机构信息

Tandy School of Computer Science, University of Tulsa, Tulsa, OK 74104, USA.

Mayo Vaccine Group, Mayo Clinic, Rochester, MN 55905, USA.

出版信息

Microorganisms. 2019 Mar 14;7(3):79. doi: 10.3390/microorganisms7030079.

Abstract

Vaccination is an effective prevention of influenza infection. However, certain individuals develop a lower antibody response after vaccination, which may lead to susceptibility to subsequent infection. An important challenge in human health is to find baseline gene signatures to help identify individuals who are at higher risk for infection despite influenza vaccination. We developed a multi-level machine learning strategy to build a predictive model of vaccine response using pre-vaccination antibody titers and network interactions between pre-vaccination gene expression levels. The first-level baseline-antibody model explains a significant amount of variation in post-vaccination response, especially for subjects with large pre-existing antibody titers. In the second level, we clustered individuals based on pre-vaccination antibody titers to focus gene-based modeling on individuals with lower baseline HAI where additional response variation may be predicted by baseline gene expression levels. In the third level, we used a gene-association interaction network (GAIN) feature selection algorithm to find the best pairs of genes that interact to influence antibody response within each baseline titer cluster. We used ratios of the top interacting genes as predictors to stabilize machine learning model generalizability. We trained and tested the multi-level approach on data with young and older individuals immunized against influenza vaccine in multiple cohorts. Our results indicate that the GAIN feature selection approach improves model generalizability and identifies genes enriched for immunologically relevant pathways, including B Cell Receptor signaling and antigen processing. Using a multi-level approach, starting with a baseline HAI model and stratifying on baseline HAI, allows for more targeted gene-based modeling. We provide an interactive tool that may be extended to other vaccine studies.

摘要

接种疫苗是预防流感感染的有效方法。然而,某些个体在接种疫苗后产生的抗体反应较低,这可能导致其易受后续感染。人类健康面临的一项重要挑战是找到基线基因特征,以帮助识别尽管接种了流感疫苗但仍有较高感染风险的个体。我们开发了一种多层次机器学习策略,利用接种前的抗体滴度和接种前基因表达水平之间的网络相互作用来构建疫苗反应预测模型。第一级基线抗体模型解释了接种后反应的大量变异,特别是对于那些已有较高抗体滴度的受试者。在第二级,我们根据接种前的抗体滴度对个体进行聚类,以便将基于基因的建模重点放在基线血凝抑制(HAI)较低的个体上,在这些个体中,基线基因表达水平可能预测额外的反应变异。在第三级,我们使用基因关联相互作用网络(GAIN)特征选择算法,在每个基线滴度聚类中找到相互作用以影响抗体反应的最佳基因对。我们将顶级相互作用基因的比率用作预测因子,以稳定机器学习模型的泛化能力。我们在多个队列中针对接种流感疫苗的年轻人和老年人的数据上训练和测试了这种多层次方法。我们的结果表明,GAIN特征选择方法提高了模型的泛化能力,并识别出在免疫相关途径中富集的基因,包括B细胞受体信号传导和抗原加工。使用从基线HAI模型开始并根据基线HAI进行分层的多层次方法,可实现更有针对性的基于基因的建模。我们提供了一个交互式工具,该工具可能会扩展到其他疫苗研究中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验