Department of Biology, University of Pisa - via L. Ghini, 13 - 56126 Pisa, Italy.
Dipartimento di Biologia e Biotecnologie, Laboratory of Functional Genomics and Proteomics of Model Systems, Università di Roma, Sapienza - via dei Sardi, 70 - 00185 Rome, Italy.
Curr Biol. 2019 Apr 1;29(7):1199-1205.e4. doi: 10.1016/j.cub.2019.02.022. Epub 2019 Mar 14.
Plant developmental plasticity relies on the activities of meristems, regions where stem cells continuously produce new cells [1]. The lateral root cap (LRC) is the outermost tissue of the root meristem [1], and it is known to play an important role during root development [2-6]. In particular, it has been shown that mechanical or genetic ablation of LRC cells affect meristem size [7, 8]; however, the molecular mechanisms involved are unknown. Root meristem size and, consequently, root growth depend on the position of the transition zone (TZ), a boundary that separates dividing from differentiating cells [9, 10]. The interaction of two phytohormones, cytokinin and auxin, is fundamental in controlling the position of the TZ [9, 10]. Cytokinin via the ARABIDOPSIS RESPONSE REGULATOR 1 (ARR1) control auxin distribution within the meristem, generating an instructive auxin minimum that positions the TZ [10]. We identify a cytokinin-dependent molecular mechanism that acts in the LRC to control the position of the TZ and meristem size. We show that auxin levels within the LRC cells depends on PIN-FORMED 5 (PIN5), a cytokinin-activated intracellular transporter that pumps auxin from the cytoplasm into the endoplasmic reticulum, and on irreversible auxin conjugation mediated by the IAA-amino synthase GRETCHEN HAGEN 3.17 (GH3.17). By titrating auxin in the LRC, the PIN5 and the GH3.17 genes control auxin levels in the entire root meristem. Overall, our results indicate that the LRC serves as an auxin sink that, under the control of cytokinin, regulates meristem size and root growth.
植物发育可塑性依赖于分生组织的活动,这些区域的干细胞不断产生新细胞[1]。侧根帽(LRC)是根分生组织的最外层组织[1],已知它在根发育过程中起着重要作用[2-6]。特别是,已经表明机械或遗传消融 LRC 细胞会影响分生组织的大小[7,8];然而,所涉及的分子机制尚不清楚。根分生组织的大小,进而根的生长取决于过渡区(TZ)的位置,该边界将分裂细胞与分化细胞分开[9,10]。两种植物激素,细胞分裂素和生长素的相互作用是控制 TZ 位置的基础[9,10]。细胞分裂素通过拟南芥响应调节剂 1(ARR1)控制分生组织内生长素的分布,产生一个有指导意义的生长素最小值,从而确定 TZ 的位置[10]。我们确定了一个依赖细胞分裂素的分子机制,该机制在 LRC 中起作用,以控制 TZ 和分生组织大小的位置。我们表明,LRC 细胞内的生长素水平取决于 PIN 形成 5(PIN5),这是一种细胞分裂素激活的细胞内转运蛋白,将生长素从细胞质泵入内质网,以及不可逆的生长素结合由生长素-氨基合成酶 GRETCHEN HAGEN 3.17(GH3.17)介导。通过在 LRC 中滴定生长素,PIN5 和 GH3.17 基因控制整个根分生组织中的生长素水平。总的来说,我们的结果表明,LRC 充当生长素汇,在细胞分裂素的控制下,调节分生组织的大小和根的生长。