Häse Florian, Fdez Galván Ignacio, Aspuru-Guzik Alán, Lindh Roland, Vacher Morgane
Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , USA.
Department of Chemistry - Ångström , The Theoretical Chemistry Programme , Uppsala University , Box 538 , 751 21 Uppsala , Sweden . Email:
Chem Sci. 2018 Dec 21;10(8):2298-2307. doi: 10.1039/c8sc04516j. eCollection 2019 Feb 28.
Molecular dynamics simulations are often key to the understanding of the mechanism, rate and yield of chemical reactions. One current challenge is the in-depth analysis of the large amount of data produced by the simulations, in order to produce valuable insight and general trends. In the present study, we propose to employ recent machine learning analysis tools to extract relevant information from simulation data without knowledge on chemical reactions. This is demonstrated by training machine learning models to predict directly a specific outcome quantity of molecular dynamics simulations - the timescale of the decomposition of 1,2-dioxetane. The machine learning models accurately reproduce the dissociation time of the compound. Keeping the aim of gaining physical insight, it is demonstrated that, in order to make accurate predictions, the models evidence empirical rules that are, today, part of the common chemical knowledge. This opens the way for conceptual breakthroughs in chemistry where machine analysis would provide a source of inspiration to humans.
分子动力学模拟通常是理解化学反应机理、速率和产率的关键。当前的一个挑战是对模拟产生的大量数据进行深入分析,以便得出有价值的见解和总体趋势。在本研究中,我们建议使用最新的机器学习分析工具,在不了解化学反应的情况下从模拟数据中提取相关信息。通过训练机器学习模型直接预测分子动力学模拟的一个特定结果量——1,2 - 二氧杂环丁烷分解的时间尺度,证明了这一点。机器学习模型准确地再现了该化合物的解离时间。为了获得物理见解,研究表明,为了做出准确的预测,这些模型证明了一些经验规则,而这些规则如今是常见化学知识的一部分。这为化学领域的概念突破开辟了道路,在这个领域中,机器分析将为人类提供灵感来源。