Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092, Zurich, Switzerland.
Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047, Kastanienbaum, Switzerland.
Sci Rep. 2019 Mar 18;9(1):4817. doi: 10.1038/s41598-019-40642-2.
Aerobic methane-oxidizing bacteria (MOB) substantially reduce methane fluxes from freshwater sediments to the atmosphere. Their metalloenzyme methane monooxygenase (MMO) catalyses the first oxidation step converting methane to methanol. Its most prevalent form is the copper-dependent particulate pMMO, however, some MOB are also able to express the iron-containing, soluble sMMO under conditions of copper scarcity. So far, the link between copper availability in different forms and biological methane consumption in freshwater systems is poorly understood. Here, we present high-resolution profiles of MOB abundance and pMMO and sMMO functional genes in relation to copper, methane and oxygen profiles across the oxic-anoxic boundary of a stratified lake. We show that even at low nanomolar copper concentrations, MOB species containing the gene for pMMO expression are present at high abundance. The findings highlight the importance of copper as a micronutrient for MOB species and the potential usage of copper acquisition strategies, even under conditions of abundant iron, and shed light on the spatial distribution of these microorganisms.
好氧甲烷氧化细菌 (MOB) 可大大降低淡水沉积物向大气中排放甲烷的通量。它们的金属酶甲烷单加氧酶 (MMO) 催化将甲烷转化为甲醇的第一步氧化反应。其最常见的形式是依赖铜的颗粒状 pMMO,但在铜缺乏的条件下,一些 MOB 也能够表达含铁的可溶性 sMMO。到目前为止,不同形式的铜可用性与淡水系统中生物甲烷消耗之间的联系还知之甚少。在这里,我们展示了在分层湖的好氧-缺氧边界处,与铜、甲烷和氧气分布相关的 MOB 丰度和 pMMO 和 sMMO 功能基因的高分辨率图谱。我们表明,即使在纳米摩尔级的铜浓度下,含有 pMMO 表达基因的 MOB 物种也以高丰度存在。这些发现强调了铜作为 MOB 物种的微量元素的重要性,以及即使在铁充足的情况下,铜获取策略的潜在用途,并揭示了这些微生物的空间分布。