Suppr超能文献

甲状腺乳头状癌患者淋巴结转移的预测:一种基于术前超声图像的影像组学方法

Prediction of Lymph Node Metastasis in Patients With Papillary Thyroid Carcinoma: A Radiomics Method Based on Preoperative Ultrasound Images.

作者信息

Liu Tongtong, Zhou Shichong, Yu Jinhua, Guo Yi, Wang Yuanyuan, Zhou Jin, Chang Cai

机构信息

1 Department of Electronic Engineering, Fudan University, Shanghai, China.

2 Key Laboratory of Medical Imaging, Computing and Computer-Assisted Intervention, Shanghai, China.

出版信息

Technol Cancer Res Treat. 2019 Jan 1;18:1533033819831713. doi: 10.1177/1533033819831713.

Abstract

BACKGROUND

Papillary thyroid carcinoma is a type of indolent tumor with a dramatically increasing incidence rate and stably high survival rate. Reducing the overdiagnosis and overtreatment of papillary thyroid carcinoma is clinically emergent and important. A radiomics model is proposed in this article to predict lymph node metastasis, the most important risk factor of papillary thyroid carcinoma, based on noninvasive routine preoperative ultrasound images.

METHODS

Four hundred fifty ultrasound manually segmented images of patients with papillary thyroid carcinoma with lymph node status obtained from pathology report were enrolled in our retrospective study. A radiomics evaluation of 614 high-throughput features were calculated, including size, shape, margin, boundary, orientation, position, echo pattern, posterior acoustic pattern, and calcification features. Then, combined feature selection strategy was used to select features with the greatest ability to discriminate lymph node status. A support vector machine classifier was employed to build and validate the prediction model. Another independent testing cohort was used to further evaluate the performance of the radiomics model.

RESULTS

Among 614 radiomics features, 50 selected features most reflecting echo pattern, posterior acoustic pattern, and calcification showed the superior lymph node status distinguishable performance with area under the receiver operating characteristic curve of 0.753, 0.740, and 0.743 separately when using each type of features predicting the lymph node status. The results of model based on all 50 final features predicting the lymph node status shown an area under the receiver operating characteristic curve of 0.782, and accuracy of 0.712. In the independent testing cohort, the proposed approach showed similar results, with area under the receiver operating characteristic curve of 0.727 and accuracy of 0.710.

CONCLUSION

Papillary thyroid carcinoma with lymph node metastasis usually shows a complex echo pattern, posterior region homogeneity, and macrocalcification or multiple calcification. The radiomics model proposed in this article is a promising method for assessing the risk of papillary thyroid carcinoma metastasis noninvasively.

摘要

背景

甲状腺乳头状癌是一种惰性肿瘤,其发病率急剧上升,生存率持续保持在较高水平。减少甲状腺乳头状癌的过度诊断和过度治疗在临床上十分迫切且重要。本文提出了一种基于术前常规无创超声图像的放射组学模型,用于预测甲状腺乳头状癌最重要的危险因素——淋巴结转移。

方法

本回顾性研究纳入了450例甲状腺乳头状癌患者的超声手动分割图像,这些患者的淋巴结状态可通过病理报告获取。计算了614个高通量特征的放射组学评估结果,包括大小、形状、边缘、边界、方向、位置、回声模式、后方回声模式和钙化特征。然后,采用联合特征选择策略来选择具有最大区分淋巴结状态能力的特征。使用支持向量机分类器构建并验证预测模型。另一个独立测试队列用于进一步评估放射组学模型的性能。

结果

在614个放射组学特征中,50个最能反映回声模式、后方回声模式和钙化的特征在使用每种特征预测淋巴结状态时,分别显示出优异的区分淋巴结状态的性能,受试者工作特征曲线下面积分别为0.753、0.740和0.743。基于所有50个最终特征预测淋巴结状态的模型结果显示受试者工作特征曲线下面积为0.782,准确率为0.712。在独立测试队列中,所提出的方法显示出类似的结果,受试者工作特征曲线下面积为0.727,准确率为0.710。

结论

伴有淋巴结转移的甲状腺乳头状癌通常表现为复杂的回声模式、后方区域均匀性以及粗大钙化或多发钙化。本文提出的放射组学模型是一种很有前景的无创评估甲状腺乳头状癌转移风险的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdc9/6429647/602c45258891/10.1177_1533033819831713-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验