Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Madrid, Spain.
Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica (IFIBIO) Bernardo Houssay, Grupo de Neurociencia de Sistemas, Buenos Aires, Argentina.
Br J Pharmacol. 2019 Jul;176(13):2146-2161. doi: 10.1111/bph.14663. Epub 2019 May 21.
L-DOPA-induced dyskinesia (LID) remains a major complication of L-DOPA therapy in Parkinson's disease. LID is believed to result from inhibition of substantia nigra reticulata (SNr) neurons by GABAergic striatal projection neurons that become supersensitive to dopamine receptor stimulation after severe nigrostriatal degeneration. Here, we asked if stimulation of direct medium spiny neuron (dMSN) GABAergic terminals at the SNr can produce a full dyskinetic state similar to that induced by L-DOPA.
Adult C57BL6 mice were lesioned with 6-hydroxydopamine in the medial forebrain bundle. Channel rhodopsin was expressed in striatonigral terminals by ipsilateral striatal injection of adeno-associated viral particles under the CaMKII promoter. Optic fibres were implanted on the ipsilateral SNr. Optical stimulation was performed before and 24 hr after three daily doses of L-DOPA at subthreshold and suprathreshold dyskinetic doses. We also examined the combined effect of light stimulation and an acute L-DOPA challenge.
Optostimulation of striatonigral terminals inhibited SNr neurons and induced all dyskinesia subtypes (optostimulation-induced dyskinesia [OID]) in 6-hydroxydopamine animals, but not in sham-lesioned animals. Additionally, chronic L-DOPA administration sensitised dyskinetic responses to striatonigral terminal optostimulation, as OIDs were more severe 24 hr after L-DOPA administration. Furthermore, L-DOPA combined with light stimulation did not result in higher dyskinesia scores than OID alone, suggesting that optostimulation has a masking effect on LID.
This work suggests that striatonigral inhibition of basal ganglia output (SNr) is a decisive mechanism mediating LID and identifies the SNr as a target for managing LID.
左旋多巴诱导的运动障碍(LID)仍然是帕金森病左旋多巴治疗的主要并发症。据信,LID 是由于黑质网状部(SNr)神经元被 GABA 能纹状体投射神经元抑制所致,这些神经元在严重的黑质纹状体变性后对多巴胺受体刺激变得过度敏感。在这里,我们想知道是否刺激 SNr 中的直接中脑纹状体神经元(dMSN)GABA 能末梢可以产生类似于 L-DOPA 诱导的完全运动障碍状态。
成年 C57BL6 小鼠经内侧前脑束 6-羟多巴胺损毁。腺相关病毒颗粒在 CaMKII 启动子的作用下通过同侧纹状体注射表达在纹状体苍白球末梢的通道视紫红质。光纤植入同侧 SNr。在每日三次 L-DOPA 亚阈值和超阈值运动障碍剂量给药前和 24 小时后进行光刺激。我们还检查了光刺激和急性 L-DOPA 挑战的联合效应。
在 6-羟多巴胺动物中,纹状体苍白球末梢的光刺激抑制了 SNr 神经元,并诱导了所有运动障碍亚型(光刺激诱导的运动障碍[OID]),但在假手术损伤动物中没有。此外,慢性 L-DOPA 给药使运动障碍对纹状体苍白球末梢光刺激的反应敏感化,因为 L-DOPA 给药后 24 小时 OID 更严重。此外,L-DOPA 联合光刺激不会导致比 OID 更高的运动障碍评分,这表明光刺激对 LID 具有掩蔽作用。
这项工作表明,基底节输出(SNr)的纹状体苍白球抑制是介导 LID 的决定性机制,并确定 SNr 是治疗 LID 的靶点。