Suppr超能文献

光刺激黑质纹状体终末会引起运动障碍,在帕金森病小鼠模型中,这种运动障碍会在给予左旋多巴后增加。

Optostimulation of striatonigral terminals in substantia nigra induces dyskinesia that increases after L-DOPA in a mouse model of Parkinson's disease.

机构信息

Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Madrid, Spain.

Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica (IFIBIO) Bernardo Houssay, Grupo de Neurociencia de Sistemas, Buenos Aires, Argentina.

出版信息

Br J Pharmacol. 2019 Jul;176(13):2146-2161. doi: 10.1111/bph.14663. Epub 2019 May 21.

Abstract

BACKGROUND AND PURPOSE

L-DOPA-induced dyskinesia (LID) remains a major complication of L-DOPA therapy in Parkinson's disease. LID is believed to result from inhibition of substantia nigra reticulata (SNr) neurons by GABAergic striatal projection neurons that become supersensitive to dopamine receptor stimulation after severe nigrostriatal degeneration. Here, we asked if stimulation of direct medium spiny neuron (dMSN) GABAergic terminals at the SNr can produce a full dyskinetic state similar to that induced by L-DOPA.

EXPERIMENTAL APPROACH

Adult C57BL6 mice were lesioned with 6-hydroxydopamine in the medial forebrain bundle. Channel rhodopsin was expressed in striatonigral terminals by ipsilateral striatal injection of adeno-associated viral particles under the CaMKII promoter. Optic fibres were implanted on the ipsilateral SNr. Optical stimulation was performed before and 24 hr after three daily doses of L-DOPA at subthreshold and suprathreshold dyskinetic doses. We also examined the combined effect of light stimulation and an acute L-DOPA challenge.

KEY RESULTS

Optostimulation of striatonigral terminals inhibited SNr neurons and induced all dyskinesia subtypes (optostimulation-induced dyskinesia [OID]) in 6-hydroxydopamine animals, but not in sham-lesioned animals. Additionally, chronic L-DOPA administration sensitised dyskinetic responses to striatonigral terminal optostimulation, as OIDs were more severe 24 hr after L-DOPA administration. Furthermore, L-DOPA combined with light stimulation did not result in higher dyskinesia scores than OID alone, suggesting that optostimulation has a masking effect on LID.

CONCLUSION AND IMPLICATIONS

This work suggests that striatonigral inhibition of basal ganglia output (SNr) is a decisive mechanism mediating LID and identifies the SNr as a target for managing LID.

摘要

背景与目的

左旋多巴诱导的运动障碍(LID)仍然是帕金森病左旋多巴治疗的主要并发症。据信,LID 是由于黑质网状部(SNr)神经元被 GABA 能纹状体投射神经元抑制所致,这些神经元在严重的黑质纹状体变性后对多巴胺受体刺激变得过度敏感。在这里,我们想知道是否刺激 SNr 中的直接中脑纹状体神经元(dMSN)GABA 能末梢可以产生类似于 L-DOPA 诱导的完全运动障碍状态。

实验方法

成年 C57BL6 小鼠经内侧前脑束 6-羟多巴胺损毁。腺相关病毒颗粒在 CaMKII 启动子的作用下通过同侧纹状体注射表达在纹状体苍白球末梢的通道视紫红质。光纤植入同侧 SNr。在每日三次 L-DOPA 亚阈值和超阈值运动障碍剂量给药前和 24 小时后进行光刺激。我们还检查了光刺激和急性 L-DOPA 挑战的联合效应。

主要结果

在 6-羟多巴胺动物中,纹状体苍白球末梢的光刺激抑制了 SNr 神经元,并诱导了所有运动障碍亚型(光刺激诱导的运动障碍[OID]),但在假手术损伤动物中没有。此外,慢性 L-DOPA 给药使运动障碍对纹状体苍白球末梢光刺激的反应敏感化,因为 L-DOPA 给药后 24 小时 OID 更严重。此外,L-DOPA 联合光刺激不会导致比 OID 更高的运动障碍评分,这表明光刺激对 LID 具有掩蔽作用。

结论和意义

这项工作表明,基底节输出(SNr)的纹状体苍白球抑制是介导 LID 的决定性机制,并确定 SNr 是治疗 LID 的靶点。

相似文献

5
L-DOPA treatment selectively restores spine density in dopamine receptor D2-expressing projection neurons in dyskinetic mice.
Biol Psychiatry. 2014 May 1;75(9):711-22. doi: 10.1016/j.biopsych.2013.05.006. Epub 2013 Jun 13.
6
Abnormal Cortico-Basal Ganglia Neurotransmission in a Mouse Model of l-DOPA-Induced Dyskinesia.
J Neurosci. 2021 Mar 24;41(12):2668-2683. doi: 10.1523/JNEUROSCI.0267-20.2020. Epub 2021 Feb 9.
8
Genetic deletion of GPR88 enhances the locomotor response to L-DOPA in experimental parkinsonism while counteracting the induction of dyskinesia.
Neuropharmacology. 2020 Jan 1;162:107829. doi: 10.1016/j.neuropharm.2019.107829. Epub 2019 Oct 24.
9
Striatal Nurr1 Facilitates the Dyskinetic State and Exacerbates Levodopa-Induced Dyskinesia in a Rat Model of Parkinson's Disease.
J Neurosci. 2020 Apr 29;40(18):3675-3691. doi: 10.1523/JNEUROSCI.2936-19.2020. Epub 2020 Apr 1.

引用本文的文献

3
Bidirectional regulation of levodopa-induced dyskinesia by a specific neural ensemble in globus pallidus external segment.
Cell Rep Med. 2024 Jun 18;5(6):101566. doi: 10.1016/j.xcrm.2024.101566. Epub 2024 May 16.
4
A non-canonical striatopallidal "Go" pathway that supports motor control.
Res Sq. 2023 Feb 11:rs.3.rs-2524816. doi: 10.21203/rs.3.rs-2524816/v1.
5
Involvement of heat shock proteins and parkin/α-synuclein axis in Parkinson's disease.
Mol Biol Rep. 2022 Nov;49(11):11061-11070. doi: 10.1007/s11033-022-07900-5. Epub 2022 Sep 12.
6
Continuous dopaminergic stimulation counteracts L-DOPA-induced overactivity of Ca in 6-OHDA-lesioned rats.
Exp Brain Res. 2022 Aug;240(7-8):1933-1941. doi: 10.1007/s00221-022-06390-y. Epub 2022 Jun 14.
8
Striatal D Dopamine Neuronal Population Dynamics in a Rat Model of Levodopa-Induced Dyskinesia.
Front Aging Neurosci. 2022 Feb 3;14:783893. doi: 10.3389/fnagi.2022.783893. eCollection 2022.
9
Current approaches to characterize micro- and macroscale circuit mechanisms of Parkinson's disease in rodent models.
Exp Neurol. 2022 May;351:114008. doi: 10.1016/j.expneurol.2022.114008. Epub 2022 Feb 9.
10

本文引用的文献

2
Genetic Knockdown of mGluR5 in Striatal D1R-Containing Neurons Attenuates L-DOPA-Induced Dyskinesia in Aphakia Mice.
Mol Neurobiol. 2019 Jun;56(6):4037-4050. doi: 10.1007/s12035-018-1356-6. Epub 2018 Sep 27.
3
Aberrant Striatal Activity in Parkinsonism and Levodopa-Induced Dyskinesia.
Cell Rep. 2018 Jun 19;23(12):3438-3446.e5. doi: 10.1016/j.celrep.2018.05.059.
4
Diametric neural ensemble dynamics in parkinsonian and dyskinetic states.
Nature. 2018 May;557(7704):177-182. doi: 10.1038/s41586-018-0090-6. Epub 2018 May 2.
7
A Subpopulation of Striatal Neurons Mediates Levodopa-Induced Dyskinesia.
Neuron. 2018 Feb 21;97(4):787-795.e6. doi: 10.1016/j.neuron.2018.01.017. Epub 2018 Feb 1.
10
THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: G protein-coupled receptors.
Br J Pharmacol. 2017 Dec;174 Suppl 1(Suppl Suppl 1):S17-S129. doi: 10.1111/bph.13878.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验