Suppr超能文献

记忆检索中同指消解的线索组合学

Cue Combinatorics in Memory Retrieval for Anaphora.

机构信息

Department of English, Linguistics Program, College of William & Mary.

出版信息

Cogn Sci. 2019 Mar;43(3):e12715. doi: 10.1111/cogs.12715.

Abstract

Many studies have shown that memory retrieval for real-time language processing relies on a cue-based access mechanism, which allows the cues available at the retrieval site to directly access the target representation in memory. An open question is how different types of cues are combined at retrieval to create a single retrieval probe ("cue combinatorics"). This study addresses this question by testing whether retrieval for antecedent-reflexive dependencies combines cues in a linear (i.e., additive) or nonlinear (i.e., multiplicative) fashion. Results from computational simulations and a reading time experiment show that target items that match all the cues of the reflexive are favored more than target items that mismatch these cues, and that different degrees of mismatches slow reading times in comparable amounts. This profile is consistent with the predictions of a nonlinear cue combination and provides evidence against models in which all cues combine in a linear fashion. A follow-up set of simulations shows that a nonlinear rule also captures previous demonstrations of interference from nontarget items during retrieval for reflexive licensing. Taken together, these results shed new light on how different types of cues combine at the retrieval site and reveal how the method of cue combination impacts the accessibility of linguistic information in memory.

摘要

许多研究表明,实时语言处理的记忆检索依赖于基于提示的访问机制,该机制允许检索点提供的提示直接访问记忆中的目标表示。一个悬而未决的问题是如何在检索时组合不同类型的提示以创建单个检索探针(“提示组合学”)。本研究通过测试先行词-反身依赖关系的检索是否以线性(即加性)或非线性(即乘性)方式组合提示来解决这个问题。计算模拟和阅读时间实验的结果表明,与不匹配这些提示的目标项相比,匹配反身代词所有提示的目标项更受青睐,并且不同程度的不匹配以可比的量减慢阅读时间。这种模式与非线性提示组合的预测一致,并为所有提示以线性方式组合的模型提供了证据。一组后续模拟表明,非线性规则还可以捕获在反身许可检索期间来自非目标项的干扰的先前演示。总之,这些结果为不同类型的提示在检索点如何组合提供了新的认识,并揭示了提示组合方式如何影响记忆中语言信息的可及性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验