Suppr超能文献

基于笛卡尔遗传编程的深度卷积神经网络进化。

Evolution of Deep Convolutional Neural Networks Using Cartesian Genetic Programming.

机构信息

RIKEN Center for AIP, Tokyo, Japan Tohoku University, Miyagi, Japan

Yokohama National University, Kanagawa, Japan

出版信息

Evol Comput. 2020 Spring;28(1):141-163. doi: 10.1162/evco_a_00253. Epub 2019 Mar 22.

Abstract

The convolutional neural network (CNN), one of the deep learning models, has demonstrated outstanding performance in a variety of computer vision tasks. However, as the network architectures become deeper and more complex, designing CNN architectures requires more expert knowledge and trial and error. In this article, we attempt to automatically construct high-performing CNN architectures for a given task. Our method uses Cartesian genetic programming (CGP) to encode the CNN architectures, adopting highly functional modules such as a convolutional block and tensor concatenation, as the node functions in CGP. The CNN structure and connectivity, represented by the CGP, are optimized to maximize accuracy using the evolutionary algorithm. We also introduce simple techniques to accelerate the architecture search: rich initialization and early network training termination. We evaluated our method on the CIFAR-10 and CIFAR-100 datasets, achieving competitive performance with state-of-the-art models. Remarkably, our method can find competitive architectures with a reasonable computational cost compared to other automatic design methods that require considerably more computational time and machine resources.

摘要

卷积神经网络(CNN)是深度学习模型之一,在各种计算机视觉任务中表现出色。然而,随着网络架构变得越来越深和复杂,设计 CNN 架构需要更多的专业知识和反复试验。在本文中,我们尝试自动构建适用于给定任务的高性能 CNN 架构。我们的方法使用笛卡尔遗传编程(CGP)对 CNN 架构进行编码,采用卷积块和张量连接等功能强大的模块作为 CGP 中的节点函数。使用进化算法优化由 CGP 表示的 CNN 结构和连接,以最大限度地提高准确性。我们还引入了简单的技术来加速架构搜索:丰富的初始化和早期网络训练终止。我们在 CIFAR-10 和 CIFAR-100 数据集上评估了我们的方法,与最先进的模型相比取得了有竞争力的性能。值得注意的是,与需要更多计算时间和机器资源的其他自动设计方法相比,我们的方法可以在合理的计算成本下找到具有竞争力的架构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验