Kool Fréderique Suzanne, van Dorp Inoni Nadine, Bolck Annabel, Leegwater Anna Jeannette, Jongbloed Geurt
Netherlands Forensic Institute, Divisie Bijzondere Dienstverlening en Expertise (BDE), Laan van Ypenburg 6, 2497 GB The Hague, The Netherlands.
Netherlands Forensic Institute, Divisie Bijzondere Dienstverlening en Expertise (BDE), Laan van Ypenburg 6, 2497 GB The Hague, The Netherlands.
Forensic Sci Int. 2019 Apr;297:342-349. doi: 10.1016/j.forsciint.2019.01.047. Epub 2019 Feb 10.
In the evaluation of measurements on characteristics of forensic trace evidence, Aitken and Lucy (2004) model the data as a two-level model using assumptions of normality where likelihood ratios are used as a measure for the strength of evidence. A two-level model assumes two sources of variation: the variation within measurements in a group (first level) and the variation between different groups (second level). Estimates of the variation within groups, the variation between groups and the overall mean are required in this approach. This paper discusses three estimators for the overall mean. In forensic science, two of these estimators are known as the weighted and unweighted mean. For an optimal choice between these estimators, the within- and between-group covariance matrices are required. In this paper a generalization to the latter two mean estimators is suggested, which is referred to as the generalized weighted mean. The weights of this estimator can be chosen such that they minimize the variance of the generalized weighted mean. These optimal weights lead to a "toy estimator", because they depend on the unknown within- and between-group covariance matrices. Using these optimal weights with estimates for the within- and between-group covariance matrices leads to the third estimator, the optimal "plug-in" generalized weighted mean estimator. The three estimators and the toy estimator are compared through a simulation study. Under conditions generally encountered in practice, we show that the unweighted mean can be preferred over the weighted mean. Moreover, in these situations the unweighted mean and the optimal generalized weighted mean behave similarly. An artificial choice of parameters is used to provide an example where the optimal generalized weighted mean outperforms both the weighted and unweighted mean. Finally, the three mean estimators are applied to real XTC data to illustrate the impact of the choice of overall mean estimator.
在评估法医微量物证特征的测量结果时,艾特肯和露西(2004年)使用正态性假设将数据建模为二级模型,其中似然比被用作证据强度的度量。二级模型假设有两个变异来源:一组测量值内的变异(第一级)和不同组之间的变异(第二级)。这种方法需要估计组内变异、组间变异和总体均值。本文讨论了总体均值的三种估计量。在法医学中,其中两种估计量被称为加权均值和非加权均值。为了在这些估计量之间做出最优选择,需要组内和组间协方差矩阵。本文提出了后两种均值估计量的一种推广,称为广义加权均值。可以选择该估计量的权重,使其最小化广义加权均值的方差。这些最优权重导致了一个“玩具估计量”,因为它们依赖于未知的组内和组间协方差矩阵。将这些最优权重与组内和组间协方差矩阵的估计值一起使用,就得到了第三种估计量,即最优“代入式”广义加权均值估计量。通过模拟研究对这三种估计量和玩具估计量进行了比较。在实际中通常遇到的条件下,我们表明非加权均值可能比加权均值更可取。此外,在这些情况下,非加权均值和最优广义加权均值的表现相似。使用人工选择的参数给出了一个例子,其中最优广义加权均值的表现优于加权均值和非加权均值。最后,将这三种均值估计量应用于实际的摇头丸数据,以说明总体均值估计量选择的影响。