Suppr超能文献

碳酸酐酶敲低可提高高 CO 水平下的拟球藻生产力。

Knockdown of carbonate anhydrase elevates Nannochloropsis productivity at high CO level.

机构信息

Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China; University of Chinese Academy of Science, Beijing, China.

Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China; University of Chinese Academy of Science, Beijing, China.

出版信息

Metab Eng. 2019 Jul;54:96-108. doi: 10.1016/j.ymben.2019.03.004. Epub 2019 Mar 20.

Abstract

Improving acid tolerance is pivotal to the development of microalgal feedstock for converting flue gas to biomass or oils. In the industrial oleaginous microalga Nannochloropsis oceanica, transcript knockdown of a cytosolic carbonic anhydrase (CA2), which is a key Carbon Concentrating Mechanism (CCM) component induced under 100 ppm CO (very low carbon, or VLC), results in ∼45%, ∼30% and ∼40% elevation of photosynthetic oxygen evolution rate, growth rate and biomass accumulation rate respectively under 5% CO (high carbon, or HC), as compared to the wild type. Such high-CO-level activated biomass over-production is reproducible across photobioreactor types and cultivation scales. Transcriptomic, proteomic and physiological changes of the mutant under high CO (HC; 5% CO) suggest a mechanism where the higher pH tolerance is coupled to reduced biophysical CCM, sustained pH hemostasis, stimulated energy intake and enhanced photosynthesis. Thus "inactivation of CCM" can generate hyper-CO-assimilating and autonomously containable industrial microalgae for flue gas-based oil production.

摘要

提高耐酸性对于开发将烟道气转化为生物质或油脂的微藻饲料至关重要。在工业产油微藻海洋盐氮单胞菌中,细胞溶质碳酸酐酶(CA2)的转录敲低,这是在 100ppm CO(极低碳,或 VLC)下诱导的关键碳浓缩机制(CCM)组成部分,导致在 5% CO(高碳,或 HC)下光合作用氧释放率、生长率和生物量积累率分别提高约 45%、30%和 40%,与野生型相比。与传统生物反应器类型和培养规模相比,这种高 CO 水平激活的生物质过量产生是可重复的。突变体在高 CO(HC;5% CO)下的转录组、蛋白质组和生理变化表明了一种机制,其中更高的 pH 耐受性与减少生物物理 CCM、持续的 pH 止血、刺激能量摄入和增强光合作用相关。因此,“CCM 失活”可以产生超 CO 同化和自主可控的工业微藻,用于基于烟道气的石油生产。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验