Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Geitmyrsveien 69-71, 0455 Oslo, Norway.
Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway.
Acta Biomater. 2019 May;90:132-145. doi: 10.1016/j.actbio.2019.03.044. Epub 2019 Mar 21.
Acellular polymer-calcium phosphate composites are promising bone graft materials. Hydrogels are suitable for providing a temporary matrix, while calcium phosphate minerals serve as ion depots for calcium and phosphate required for de novo bone formation. Crystalline calcium phosphates are stable under biological conditions and are commonly used in such scaffolds. However, the low solubility of these phases reduces the availability of free ions and potentially obstructs the remodelling necessary for the formation of mineralised tissue. Here, we investigate two different strategies to stabilise amorphous calcium phosphates in a synthetic polyethylene glycol-based hydrogel matrix. In vitro experiments mimicking an injectable application showed that amorphous calcium phosphate (ACP) of variable stability was formed in the hydrogel matrices. In additive-free composites, ACP transformed into brushite within minutes. Citrate or zinc additives were found to stabilise the formed ACP phase to different degrees. In the presence of citrate, ACP was stable for at least 2 h before it transformed into hydroxyapatite within 3-20 days. Partial calcium substitution with zinc (Zn/Ca = 10%) produced zinc-doped ACP of high stability that did not show signs of crystallisation for at least 20 days. The presented methods and findings open new possibilities for the design of novel injectable synthetic bone graft materials. The possibility to produce ACP with tailorable stability promises great potential for creating temporary scaffolds with good osteogenic properties. STATEMENT OF SIGNIFICANCE: Synthetic hydrogel-calcium phosphate (CaP) composites are promising biomaterials to replace human- and animal-derived bone scaffolds. Most reported hydrogel-CaP composite materials employ crystalline CaP phases that lack the osteoinductive properties of autograft. Stabilising amorphous calcium phosphates (ACP) could overcome this limitation, readily delivering calcium and phosphate ions and facilitating remodelling into new bone tissue. The design of synthetic hydrogel-ACP scaffolds, however, requires more understanding of the mineralisation processes in such matrices. This study presents a model system to characterise the complex mineral formation and transformation processes within a hydrogel matrix. We demonstrate a facile route to produce self-mineralising injectable synthetic hydrogels and prove two different strategies to stabilise ACP for different periods within the formed composites.
脱细胞聚合物-磷酸钙复合材料是很有前途的骨移植物材料。水凝胶适合提供临时基质,而磷酸钙矿物质则作为新骨形成所需钙和磷的离子库。结晶磷酸钙在生物条件下稳定,常用于此类支架。然而,这些相的低溶解度降低了游离离子的可用性,并可能阻碍了矿化组织形成所需的重塑。在这里,我们研究了两种不同的策略来稳定合成的聚乙二醇基水凝胶基质中的无定形磷酸钙。模拟可注射应用的体外实验表明,在水凝胶基质中形成了不同稳定性的无定形磷酸钙 (ACP)。在无添加剂的复合材料中,ACP 在几分钟内转化为磷酸氢钙。发现柠檬酸或锌添加剂可以不同程度地稳定形成的 ACP 相。在柠檬酸存在下,ACP 在转化为羟基磷灰石之前至少稳定 2 小时,在 3-20 天内转化。用锌部分取代钙(Zn/Ca=10%)产生了高度稳定的锌掺杂 ACP,至少 20 天内没有结晶迹象。所提出的方法和发现为新型可注射合成骨移植物材料的设计开辟了新的可能性。具有可定制稳定性的 ACP 的生产可能性为具有良好成骨特性的临时支架的创造提供了巨大的潜力。研究意义:合成水凝胶-磷酸钙 (CaP) 复合材料是替代人和动物来源的骨支架的有前途的生物材料。大多数报道的水凝胶-CaP 复合材料采用缺乏自体移植物成骨特性的结晶 CaP 相。稳定无定形磷酸钙 (ACP) 可以克服这一限制,可轻易地提供钙和磷离子,并促进重塑为新的骨组织。然而,合成水凝胶-ACP 支架的设计需要更多地了解此类基质中的矿化过程。本研究提出了一种模型系统,用于表征水凝胶基质中的复杂矿物形成和转化过程。我们展示了一种简单的方法来制备自矿化的可注射合成水凝胶,并证明了两种不同的策略来稳定复合材料中形成的 ACP 不同时间。