Suppr超能文献

卷积稀疏编码在压缩感知 CT 重建中的应用。

Convolutional Sparse Coding for Compressed Sensing CT Reconstruction.

出版信息

IEEE Trans Med Imaging. 2019 Nov;38(11):2607-2619. doi: 10.1109/TMI.2019.2906853. Epub 2019 Mar 22.

Abstract

Over the past few years, dictionary learning (DL)-based methods have been successfully used in various image reconstruction problems. However, the traditional DL-based computed tomography (CT) reconstruction methods are patch-based and ignore the consistency of pixels in overlapped patches. In addition, the features learned by these methods always contain shifted versions of the same features. In recent years, convolutional sparse coding (CSC) has been developed to address these problems. In this paper, inspired by several successful applications of CSC in the field of signal processing, we explore the potential of CSC in sparse-view CT reconstruction. By directly working on the whole image, without the necessity of dividing the image into overlapped patches in DL-based methods, the proposed methods can maintain more details and avoid artifacts caused by patch aggregation. With predetermined filters, an alternating scheme is developed to optimize the objective function. Extensive experiments with simulated and real CT data were performed to validate the effectiveness of the proposed methods. The qualitative and quantitative results demonstrate that the proposed methods achieve better performance than the several existing state-of-the-art methods.

摘要

在过去的几年中,基于字典学习(DL)的方法已成功应用于各种图像重建问题。然而,传统的基于 DL 的计算机断层扫描(CT)重建方法是基于块的,忽略了重叠块中像素的一致性。此外,这些方法学习到的特征总是包含相同特征的移位版本。近年来,卷积稀疏编码(CSC)已被开发用于解决这些问题。在本文中,我们受到 CSC 在信号处理领域的几个成功应用的启发,探索了 CSC 在稀疏视图 CT 重建中的潜力。通过直接对整个图像进行操作,而无需在基于 DL 的方法中将图像划分为重叠块,所提出的方法可以保留更多细节并避免由块聚合引起的伪影。通过预定的滤波器,开发了一种交替方案来优化目标函数。使用模拟和真实 CT 数据进行了广泛的实验,以验证所提出方法的有效性。定性和定量结果表明,所提出的方法比几种现有的最先进方法具有更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验