Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States.
Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208 , United States.
Anal Chem. 2019 May 7;91(9):5566-5572. doi: 10.1021/acs.analchem.8b03715. Epub 2019 Apr 11.
This paper describes a label free technique for determining ligand loading on metal nanoparticles using a variant of secondary ion mass spectrometry. Au clusters bombard DNA-functionalized anisotropic gold nanostars and isotropic nanospheres with similar surface areas to determine ligand density. For each projectile impact, co-localized molecules within the emission area of a single impact (diameter of 10-15 nm) were examined for each particle. Individual nanoparticle analysis allows for determination of the relationship between particle geometry and DNA loading. We found that branched particles exhibited increased ligand density versus nanospheres and determined that positive and neutral curvature could facilitate additional loading. This methodology can be applied to optimize loading for any ligand-core interaction independent of nanoparticle core, ligand, or attachment chemistry.
本文描述了一种使用二次离子质谱变体的无标记技术,用于确定金属纳米粒子上配体的负载量。Au 团簇轰击具有相似表面积的 DNA 功能化各向异性金纳米星和各向同性纳米球,以确定配体密度。对于每个射弹撞击,在单个撞击的发射区域(直径为 10-15nm)内检查共定位分子。对每个纳米颗粒进行单独分析,以确定颗粒几何形状与 DNA 负载之间的关系。我们发现,与纳米球相比,支化颗粒表现出更高的配体密度,并确定正曲率和中性曲率可以促进额外的负载。这种方法可应用于优化任何配体-核相互作用的负载,而与纳米核、配体或附着化学无关。