Suppr超能文献

有界随机(logistic)系统的相图。

Phase Diagram for Logistic Systems under Bounded Stochasticity.

机构信息

Department of Physics, Bar-Ilan University, Ramat-Gan IL52900, Israel.

出版信息

Phys Rev Lett. 2019 Mar 15;122(10):108102. doi: 10.1103/PhysRevLett.122.108102.

Abstract

Extinction is the ultimate absorbing state of any stochastic birth-death process; hence, the time to extinction is an important characteristic of any natural population. Here we consider logistic and logisticlike systems under the combined effect of demographic and bounded environmental stochasticity. Three phases are identified: an inactive phase where the mean time to extinction T increases logarithmically with the initial population size, an active phase where T grows exponentially with the carrying capacity N, and a temporal Griffiths phase, with a power-law relationship between T and N. The system supports an exponential phase only when the noise is bounded, in which case the continuum (diffusion) approximation breaks down within the Griffiths phase. This breakdown is associated with a crossover between qualitatively different survival statistics and decline modes. To study the power-law phase we present a new WKB scheme, which is applicable both in the diffusive and in the nondiffusive regime.

摘要

灭绝是任何随机出生-死亡过程的最终吸收状态;因此,灭绝时间是任何自然种群的重要特征。在这里,我们考虑在人口统计和有界环境随机性综合影响下的 logistic 和 logisticlike 系统。确定了三个阶段:一个不活跃阶段,其中灭绝的平均时间 T 随着初始种群大小对数增长;一个活跃阶段,其中 T 随着承载能力 N 指数增长;以及一个暂时的 Griffiths 阶段,其中 T 和 N 之间存在幂律关系。只有当噪声受到限制时,系统才支持指数阶段,在这种情况下,Griffiths 阶段内连续(扩散)逼近会失效。这种故障与定性不同的生存统计数据和下降模式之间的交叉相关联。为了研究幂律阶段,我们提出了一种新的 WKB 方案,该方案既适用于扩散也适用于非扩散区域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验