Suppr超能文献

沙门氏菌与活性氧:爱恨交织。

Salmonella and Reactive Oxygen Species: A Love-Hate Relationship.

机构信息

Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden,

Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden,

出版信息

J Innate Immun. 2019;11(3):216-226. doi: 10.1159/000496370. Epub 2019 Apr 3.

Abstract

Salmonella enterica represents an enterobacterial species including numerous serovars that cause infections at, or initiated at, the intestinal epithelium. Many serovars also act as facultative intracellular pathogens with a tropism for phagocytic cells. These bacteria not only survive in phagocytes but also undergo de facto replication therein. Phagocytes, through the activities of phagocyte NADPH-dependent oxidase and inducible nitric oxide synthase, are very proficient in converting molecular oxygen to reactive oxygen (ROS) and nitrogen species (RNS). These compounds represent highly efficient effectors of the innate immune defense. Salmonella is by no means resistant to these effectors, which may stand in contrast to the host niches chosen. To cope with this paradox, these bacteria rely on an array of detoxification and repair systems. Combination these systems allows for a high enough tolerance to ROS and RNS to enable establishment of infection. In addition, salmonella possesses protein factors that have the potential to dampen the infection-associated inflammation, which evidently results in a reduced exposure to ROS and RNS. This review attempts to summarize the activities and strategies by which salmonella tries to cope with ROS and RNS and how the bacterium can make use of these innate defense factors.

摘要

肠炎沙门氏菌是肠杆菌科的一个代表菌属,包含众多血清型,可引起肠道上皮或起始部位的感染。许多血清型还可作为兼性细胞内病原体,对吞噬细胞具有趋化性。这些细菌不仅在吞噬细胞内存活,而且实际上还在其中复制。吞噬细胞通过吞噬细胞 NADPH 依赖性氧化酶和诱导型一氧化氮合酶的活性,非常有效地将分子氧转化为活性氧(ROS)和氮化物(RNS)。这些化合物是先天免疫防御的高效效应因子。沙门氏菌并非对这些效应因子具有抗性,这可能与其选择的宿主小生境有关。为了应对这一矛盾,这些细菌依赖于一系列解毒和修复系统。这些系统的组合使细菌具有足够高的 ROS 和 RNS 耐受性,从而能够建立感染。此外,沙门氏菌还具有潜在的蛋白因子,可以抑制感染相关的炎症,这显然会减少 ROS 和 RNS 的暴露。本文试图总结沙门氏菌应对 ROS 和 RNS 的活性和策略,以及细菌如何利用这些先天防御因子。

相似文献

1
Salmonella and Reactive Oxygen Species: A Love-Hate Relationship.
J Innate Immun. 2019;11(3):216-226. doi: 10.1159/000496370. Epub 2019 Apr 3.
3
Interactions of Salmonella enterica serovar Muenchen with macrophages of the turtle Trachemys scripta scripta.
Dev Comp Immunol. 2002 Apr;26(3):295-304. doi: 10.1016/s0145-305x(01)00075-1.
4
Exploiting host immunity: the Salmonella paradigm.
Trends Immunol. 2015 Feb;36(2):112-20. doi: 10.1016/j.it.2014.12.003. Epub 2015 Jan 9.
5
Salmonella Utilizes Zinc To Subvert Antimicrobial Host Defense of Macrophages via Modulation of NF-κB Signaling.
Infect Immun. 2017 Nov 17;85(12). doi: 10.1128/IAI.00418-17. Print 2017 Dec.
6
Differential reactive oxygen and nitrogen production and clearance of Salmonella serovars by chicken and mouse macrophages.
Dev Comp Immunol. 2006;30(10):942-53. doi: 10.1016/j.dci.2005.12.001. Epub 2006 Jan 5.
7
Oxygen-dependent anti-Salmonella activity of macrophages.
Trends Microbiol. 2001 Jan;9(1):29-33. doi: 10.1016/s0966-842x(00)01897-7.
8
Interactions between nitric oxide, oxygen, reactive oxygen species and reactive nitrogen species.
Biochem Soc Trans. 2006 Nov;34(Pt 5):953-6. doi: 10.1042/BST0340953.
9
Disparate impact of oxidative host defenses determines the fate of Salmonella during systemic infection in mice.
Cell Host Microbe. 2014 Jan 15;15(1):72-83. doi: 10.1016/j.chom.2013.12.006.

引用本文的文献

1
Reactive oxygen species and reactive nitrogen species are double-edged swords in Salmonella infection.
Arch Microbiol. 2025 Aug 6;207(9):215. doi: 10.1007/s00203-025-04420-1.
2
Exploring the impact of probiotic route of administration on its protective effects against pathogenic infection in .
J R Soc N Z. 2024 May 15;55(6):1610-1622. doi: 10.1080/03036758.2024.2353736. eCollection 2025.
3
Novel genetic features associated with the recently emerged MDR clade of Dublin linked to human clinical cases.
Microbiol Spectr. 2025 Sep 2;13(9):e0133625. doi: 10.1128/spectrum.01336-25. Epub 2025 Jul 18.
6
CRISPR-Cas system positively regulates virulence of Salmonella enterica serovar Typhimurium.
Gut Pathog. 2024 Oct 26;16(1):63. doi: 10.1186/s13099-024-00653-5.
8
MARCKS Inhibition Alters Bovine Neutrophil Responses to Typhimurium.
Biomedicines. 2024 Feb 16;12(2):442. doi: 10.3390/biomedicines12020442.
9
Selection and validation of genes related to oxidative stress production and clearance in macrophages infected with .
Front Cell Infect Microbiol. 2023 Dec 12;13:1324611. doi: 10.3389/fcimb.2023.1324611. eCollection 2023.

本文引用的文献

1
Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance.
Front Cell Infect Microbiol. 2017 Aug 25;7:373. doi: 10.3389/fcimb.2017.00373. eCollection 2017.
2
Redox-active conducting polymers modulate biofilm formation by controlling availability of electron acceptors.
NPJ Biofilms Microbiomes. 2017 Sep 4;3:19. doi: 10.1038/s41522-017-0027-0. eCollection 2017.
3
The Role of Reactive Oxygen Species in Antibiotic-Mediated Killing of Bacteria.
Trends Microbiol. 2017 Jun;25(6):456-466. doi: 10.1016/j.tim.2016.12.008. Epub 2017 Jan 12.
5
Biofilms: an emergent form of bacterial life.
Nat Rev Microbiol. 2016 Aug 11;14(9):563-75. doi: 10.1038/nrmicro.2016.94.
7
Stimulation of biofilm formation by oxidative stress in Campylobacter jejuni under aerobic conditions.
Virulence. 2016 Oct 2;7(7):846-51. doi: 10.1080/21505594.2016.1197471. Epub 2016 Jun 7.
8
Contribution of protein isoaspartate methyl transferase (PIMT) in the survival of Salmonella Typhimurium under oxidative stress and virulence.
Int J Med Microbiol. 2016 Jun;306(4):222-30. doi: 10.1016/j.ijmm.2016.04.005. Epub 2016 Apr 29.
9
The Typhoid Toxin Promotes Host Survival and the Establishment of a Persistent Asymptomatic Infection.
PLoS Pathog. 2016 Apr 7;12(4):e1005528. doi: 10.1371/journal.ppat.1005528. eCollection 2016 Apr.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验