Suppr超能文献

通过双目标函数方法实现冷冻电子显微镜中信号检测的稳健性。

Robustness of signal detection in cryo-electron microscopy via a bi-objective-function approach.

机构信息

Intel® Parallel Computing Center for Structural Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.

Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA.

出版信息

BMC Bioinformatics. 2019 Apr 3;20(1):169. doi: 10.1186/s12859-019-2714-8.

Abstract

BACKGROUND

The detection of weak signals and selection of single particles from low-contrast micrographs of frozen hydrated biomolecules by cryo-electron microscopy (cryo-EM) represents a major practical bottleneck in cryo-EM data analysis. Template-based particle picking by an objective function using fast local correlation (FLC) allows computational extraction of a large number of candidate particles from micrographs. Another independent objective function based on maximum likelihood estimates (MLE) can be used to align the images and verify the presence of a signal in the selected particles. Despite the widespread applications of the two objective functions, an optimal combination of their utilities has not been exploited. Here we propose a bi-objective function (BOF) approach that combines both FLC and MLE and explore the potential advantages and limitations of BOF in signal detection from cryo-EM data.

RESULTS

The robustness of the BOF strategy in particle selection and verification was systematically examined with both simulated and experimental cryo-EM data. We investigated how the performance of the BOF approach is quantitatively affected by the signal-to-noise ratio (SNR) of cryo-EM data and by the choice of initialization for FLC and MLE. We quantitatively pinpointed the critical SNR (~ 0.005), at which the BOF approach starts losing its ability to select and verify particles reliably. We found that the use of a Gaussian model to initialize the MLE suppresses the adverse effects of reference dependency in the FLC function used for template-matching.

CONCLUSION

The BOF approach, which combines two distinct objective functions, provides a sensitive way to verify particles for downstream cryo-EM structure analysis. Importantly, reference dependency of the FLC does not necessarily transfer to the MLE, enabling the robust detection of weak signals. Our insights into the numerical behavior of the BOF approach can be used to improve automation efficiency in the cryo-EM data processing pipeline for high-resolution structural determination.

摘要

背景

利用冷冻电子显微镜(cryo-EM)从冷冻水合生物分子的低对比度显微照片中检测微弱信号并选择单颗粒,这是 cryo-EM 数据分析中的一个主要实际瓶颈。基于模板的通过快速局部相关(FLC)的目标函数的粒子选择允许从显微照片中计算提取大量候选粒子。另一个基于最大似然估计(MLE)的独立目标函数可用于对齐图像并验证所选粒子中信号的存在。尽管这两个目标函数得到了广泛的应用,但它们的效用并未得到最佳组合。在这里,我们提出了一种将 FLC 和 MLE 结合起来的双目标函数(BOF)方法,并探索了 BOF 在从 cryo-EM 数据中检测信号方面的潜在优势和局限性。

结果

使用模拟和实验 cryo-EM 数据系统地检查了 BOF 策略在粒子选择和验证中的稳健性。我们研究了 BOF 方法的性能如何受到 cryo-EM 数据的信噪比(SNR)以及 FLC 和 MLE 的初始化选择的定量影响。我们定量地确定了 BOF 方法开始无法可靠地选择和验证粒子的临界 SNR(~0.005)。我们发现,使用高斯模型初始化 MLE 可以抑制用于模板匹配的 FLC 函数中参考依赖性的不利影响。

结论

该 BOF 方法结合了两个不同的目标函数,为下游 cryo-EM 结构分析提供了一种敏感的粒子验证方法。重要的是,FLC 的参考依赖性不一定会转移到 MLE,从而能够稳健地检测微弱信号。我们对 BOF 方法的数值行为的深入了解可用于提高 cryo-EM 数据处理管道的自动化效率,以实现高分辨率结构测定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2b0/6446299/f87e100081e1/12859_2019_2714_Fig4_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验