The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
Spectrochim Acta A Mol Biomol Spectrosc. 2019 Jun 15;217:247-255. doi: 10.1016/j.saa.2019.03.092. Epub 2019 Mar 27.
The applications of metallic nanoclusters and nanoparticles in biological sensing have attracted special attention owing to their optical interaction based on fluorescence and surface plasmon resonance (SPR). In this work, we designed a fluorescent nanoprobe for the determination of L-cysteine (L-Cys) based on fluorescence resonance energy transfer (FRET) from gold‑silver bimetallic nanoclusters (Au-Ag NCs) to gold nanorods (AuNRs). Firstly, the negatively charged Au-Ag NCs protected by bovine serum albumin (BSA) are directly adsorbed on the surface of the positively charged AuNRs through electrostatic interaction, and the FRET effect leads to distinct fluorescence quenching of Au-Ag NCs at 615nm. The SPR wavelength of AuNRs is dependent on the aspect ratio, so the SPR of AuNRs could be tuned to have a better spectral overlap with fluorescence of Au-Ag NCs, which enhances the fluorescence quenching effect. Because the SH group of L-Cys has an affinity with gold, the addition of L-Cys can result in the release of Au-Ag NCs from the surface of AuNRs via forming AuS bonds. Thus, the introduction of L-Cys could effectively restore the fluorescence emission of the AuNRs/Au-Ag NCs system because of the restraint of FRET effect. Under the optimized conditions, the fluorescence recovery of AuNRs/Au-Ag NCs probe exhibits a linear response to L-Cys concentration ranging from 5 to 100μM, and the corresponding theoretical detection limit (LOD) is 1.73μM. Meanwhile, this method displays excellent sensitivity and selectivity for L-Cys over other amino acids, and it has been successfully applied to detect L-Cys in real samples.
基于荧光和表面等离子体共振(SPR)的光学相互作用,金属纳米团簇和纳米粒子在生物传感中的应用引起了特别关注。在这项工作中,我们设计了一种基于金-银双金属纳米团簇(Au-Ag NCs)到金纳米棒(AuNRs)的荧光共振能量转移(FRET)的荧光纳米探针,用于测定 L-半胱氨酸(L-Cys)。首先,带负电荷的 Au-Ag NCs 被牛血清白蛋白(BSA)保护,通过静电相互作用直接吸附在带正电荷的 AuNRs 表面,FRET 效应导致 Au-Ag NCs 在 615nm 处的荧光显著猝灭。AuNRs 的 SPR 波长取决于纵横比,因此可以调整 AuNRs 的 SPR,使其与 Au-Ag NCs 的荧光具有更好的光谱重叠,从而增强荧光猝灭效果。由于 L-Cys 的 SH 基团与金具有亲和力,L-Cys 的加入会导致 Au-Ag NCs 通过形成 AuS 键从 AuNRs 表面释放。因此,由于 FRET 效应的抑制,L-Cys 的引入可以有效地恢复 AuNRs/Au-Ag NCs 体系的荧光发射。在优化条件下,AuNRs/Au-Ag NCs 探针的荧光恢复对 L-Cys 浓度表现出从 5 到 100μM 的线性响应,相应的理论检测限(LOD)为 1.73μM。同时,该方法对 L-Cys 具有优异的灵敏度和选择性,优于其他氨基酸,已成功应用于实际样品中 L-Cys 的检测。