Suppr超能文献

微神经生理学作为一种开发外周神经控制手假肢解码算法的工具。

Microneurography as a tool to develop decoding algorithms for peripheral neuro-controlled hand prostheses.

机构信息

Neuroengineering Lab, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, TAN E 2, Tannenstrasse 1, 8092, Zurich, Switzerland.

Center for Neuroprosthetics, Ecole Polytechnique Federale de Lausanne, Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland.

出版信息

Biomed Eng Online. 2019 Apr 8;18(1):44. doi: 10.1186/s12938-019-0659-9.

Abstract

BACKGROUND

The usability of dexterous hand prostheses is still hampered by the lack of natural and effective control strategies. A decoding strategy based on the processing of descending efferent neural signals recorded using peripheral neural interfaces could be a solution to such limitation. Unfortunately, this choice is still restrained by the reduced knowledge of the dynamics of human efferent signals recorded from the nerves and associated to hand movements.

FINDINGS

To address this issue, in this work we acquired neural efferent activities from healthy subjects performing hand-related tasks using ultrasound-guided microneurography, a minimally invasive technique, which employs needles, inserted percutaneously, to record from nerve fibers. These signals allowed us to identify neural features correlated with force and velocity of finger movements that were used to decode motor intentions. We developed computational models, which confirmed the potential translatability of these results showing how these neural features hold in absence of feedback and when implantable intrafascicular recording, rather than microneurography, is performed.

CONCLUSIONS

Our results are a proof of principle that microneurography could be used as a useful tool to assist the development of more effective hand prostheses.

摘要

背景

灵巧手假肢的可用性仍然受到缺乏自然有效的控制策略的限制。基于使用外围神经接口记录的下行传出神经信号处理的解码策略可能是解决这种限制的一种方法。不幸的是,这种选择仍然受到记录到手运动相关神经的传出信号的动力学的有限知识的限制。

发现

为了解决这个问题,在这项工作中,我们使用超声引导的微神经记录术(一种微创技术,使用针经皮插入以记录神经纤维)从进行手部相关任务的健康受试者中获取神经传出活动。这些信号使我们能够识别与手指运动的力和速度相关的神经特征,这些特征可用于解码运动意图。我们开发了计算模型,这些模型证实了这些结果的潜在可翻译性,表明在没有反馈的情况下以及当进行可植入的束内记录而不是微神经记录时,这些神经特征如何保持。

结论

我们的结果证明了微神经记录术可用作辅助开发更有效的手部假肢的有用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验