Suppr超能文献

从位点频率谱和单倍型结构推断不同种群大小下的自然选择模型和起始时间。

Inferring the model and onset of natural selection under varying population size from the site frequency spectrum and haplotype structure.

机构信息

1 Department of Human Genetics, University of Chicago , Chicago, IL , USA.

3 School of Medicine, Faculty of Health Sciences, Trinity College Dublin, the University of Dublin , Dublin , Ireland.

出版信息

Proc Biol Sci. 2019 Feb 13;286(1896):20182541. doi: 10.1098/rspb.2018.2541.

Abstract

A fundamental question about adaptation in a population is the time of onset of the selective pressure acting on beneficial alleles. Inferring this time, in turn, depends on the selection model. We develop a framework of approximate Bayesian computation (ABC) that enables the use of the full site frequency spectrum and haplotype structure to test the goodness-of-fit of selection models and estimate the timing of selection under varying population size scenarios. We show that our method has sufficient power to distinguish natural selection from neutrality even if relatively old selection increased the frequency of a pre-existing allele from 20% to 50% or from 40% to 80%. Our ABC can accurately estimate the time of onset of selection on a new mutation. However, estimates are prone to bias under the standing variation model, possibly due to the uncertainty in the allele frequency at the onset of selection. We further extend our approach to take advantage of ancient DNA data that provides information on the allele frequency path of the beneficial allele. Applying our ABC, including both modern and ancient human DNA data, to four pigmentation alleles in Europeans, we detected selection on standing variants that occurred after the dispersal from Africa even though models of selection on a new mutation were initially supported for two of these alleles without the ancient data.

摘要

一个关于群体适应的基本问题是,对有益等位基因起作用的选择压力开始的时间。反过来,推断这个时间又取决于选择模型。我们开发了一个近似贝叶斯计算 (ABC) 的框架,该框架可以利用全位点频率谱和单倍型结构来测试选择模型的拟合优度,并在不同的种群规模情景下估计选择的时间。我们表明,即使相对古老的选择将一个预先存在的等位基因的频率从 20%增加到 50%或从 40%增加到 80%,我们的方法也有足够的能力来区分自然选择和中性。我们的 ABC 可以准确估计新突变选择的开始时间。然而,在固定变异模型下,估计值容易出现偏差,可能是由于选择开始时等位基因频率的不确定性所致。我们进一步扩展我们的方法,利用提供有益等位基因等位基因频率路径信息的古代 DNA 数据。通过将我们的 ABC 应用于欧洲四个色素沉着等位基因的现代和古代人类 DNA 数据,我们检测到了在非洲扩散之后发生的固定变异选择,尽管对于其中两个等位基因,在没有古代数据的情况下,最初支持新突变选择的模型。

相似文献

2
The evolution of skin pigmentation-associated variation in West Eurasia.
Proc Natl Acad Sci U S A. 2021 Jan 5;118(1). doi: 10.1073/pnas.2009227118.
3
Inferring the age of a fixed beneficial allele.
Mol Ecol. 2016 Jan;25(1):157-69. doi: 10.1111/mec.13478. Epub 2015 Dec 24.
4
Bayesian Inference of Natural Selection from Allele Frequency Time Series.
Genetics. 2016 May;203(1):493-511. doi: 10.1534/genetics.116.187278. Epub 2016 Mar 23.
6
Deep estimation of the intensity and timing of natural selection from ancient genomes.
Mol Ecol Resour. 2024 Nov;24(8):e14015. doi: 10.1111/1755-0998.14015. Epub 2024 Aug 31.
7
Modeling the spatiotemporal spread of beneficial alleles using ancient genomes.
Elife. 2022 Dec 20;11:e73767. doi: 10.7554/eLife.73767.
8
A hidden Markov model for investigating recent positive selection through haplotype structure.
Theor Popul Biol. 2015 Feb;99:18-30. doi: 10.1016/j.tpb.2014.11.001. Epub 2014 Nov 13.
9
Estimating the Ages of Selection Signals from Different Epochs in Human History.
Mol Biol Evol. 2016 Mar;33(3):657-69. doi: 10.1093/molbev/msv256. Epub 2015 Nov 5.
10
The timing of pigmentation lightening in Europeans.
Mol Biol Evol. 2013 Jan;30(1):24-35. doi: 10.1093/molbev/mss207. Epub 2012 Aug 25.

引用本文的文献

1
Prospects for genomic surveillance for selection in schistosome parasites.
Front Epidemiol. 2022 Sep 29;2:932021. doi: 10.3389/fepid.2022.932021. eCollection 2022.
2
A Novel Approach Utilizing Domain Adversarial Neural Networks for the Detection and Classification of Selective Sweeps.
Adv Sci (Weinh). 2024 Apr;11(14):e2304842. doi: 10.1002/advs.202304842. Epub 2024 Feb 2.
3
Spatial and temporal diversity of positive selection on shared haplotypes at the PSCA locus among worldwide human populations.
Heredity (Edinb). 2023 Aug;131(2):156-169. doi: 10.1038/s41437-023-00631-8. Epub 2023 Jun 23.
4
Modeling the spatiotemporal spread of beneficial alleles using ancient genomes.
Elife. 2022 Dec 20;11:e73767. doi: 10.7554/eLife.73767.
5
Admixture has obscured signals of historical hard sweeps in humans.
Nat Ecol Evol. 2022 Dec;6(12):2003-2015. doi: 10.1038/s41559-022-01914-9. Epub 2022 Oct 31.

本文引用的文献

1
Rapid evolution of a skin-lightening allele in southern African KhoeSan.
Proc Natl Acad Sci U S A. 2018 Dec 26;115(52):13324-13329. doi: 10.1073/pnas.1801948115. Epub 2018 Dec 10.
2
Fine-tuning of Approximate Bayesian Computation for human population genomics.
Curr Opin Genet Dev. 2018 Dec;53:60-69. doi: 10.1016/j.gde.2018.06.016. Epub 2018 Jul 18.
3
Going global by adapting local: A review of recent human adaptation.
Science. 2016 Oct 7;354(6308):54-59. doi: 10.1126/science.aaf5098.
4
Bayesian Inference of Natural Selection from Allele Frequency Time Series.
Genetics. 2016 May;203(1):493-511. doi: 10.1534/genetics.116.187278. Epub 2016 Mar 23.
5
Genome-wide patterns of selection in 230 ancient Eurasians.
Nature. 2015 Dec 24;528(7583):499-503. doi: 10.1038/nature16152. Epub 2015 Nov 23.
6
Inferring the age of a fixed beneficial allele.
Mol Ecol. 2016 Jan;25(1):157-69. doi: 10.1111/mec.13478. Epub 2015 Dec 24.
7
Estimating the Ages of Selection Signals from Different Epochs in Human History.
Mol Biol Evol. 2016 Mar;33(3):657-69. doi: 10.1093/molbev/msv256. Epub 2015 Nov 5.
8
Population genomics of Bronze Age Eurasia.
Nature. 2015 Jun 11;522(7555):167-72. doi: 10.1038/nature14507.
9
On the unfounded enthusiasm for soft selective sweeps.
Nat Commun. 2014 Oct 27;5:5281. doi: 10.1038/ncomms6281.
10
Ancient human genomes suggest three ancestral populations for present-day Europeans.
Nature. 2014 Sep 18;513(7518):409-13. doi: 10.1038/nature13673.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验