Suppr超能文献

药物-靶点相互作用预测的计算模型

The Computational Models of Drug-target Interaction Prediction.

作者信息

Ding Yijie, Tang Jijun, Guo Fei

机构信息

School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China.

Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, United States.

出版信息

Protein Pept Lett. 2020;27(5):348-358. doi: 10.2174/0929866526666190410124110.

Abstract

The identification of Drug-Target Interactions (DTIs) is an important process in drug discovery and medical research. However, the tradition experimental methods for DTIs identification are still time consuming, extremely expensive and challenging. In the past ten years, various computational methods have been developed to identify potential DTIs. In this paper, the identification methods of DTIs are summarized. What's more, several state-of-the-art computational methods are mainly introduced, containing network-based method and machine learning-based method. In particular, for machine learning-based methods, including the supervised and semisupervised models, have essential differences in the approach of negative samples. Although these effective computational models in identification of DTIs have achieved significant improvements, network-based and machine learning-based methods have their disadvantages, respectively. These computational methods are evaluated on four benchmark data sets via values of Area Under the Precision Recall curve (AUPR).

摘要

药物-靶点相互作用(DTIs)的识别是药物发现和医学研究中的一个重要过程。然而,传统的用于识别DTIs的实验方法仍然耗时、极其昂贵且具有挑战性。在过去十年中,已经开发了各种计算方法来识别潜在的DTIs。本文总结了DTIs的识别方法。此外,主要介绍了几种最先进的计算方法,包括基于网络的方法和基于机器学习的方法。特别是,对于基于机器学习的方法,包括监督和半监督模型,在负样本的处理方法上有本质区别。尽管这些用于识别DTIs的有效计算模型已经取得了显著进展,但基于网络的方法和基于机器学习的方法分别存在各自的缺点。这些计算方法通过精确召回率曲线下面积(AUPR)值在四个基准数据集上进行了评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验