Suppr超能文献

表观遗传学在骨科再生医学和肿瘤学中的新前沿。

Epigenetics as a New Frontier in Orthopedic Regenerative Medicine and Oncology.

机构信息

Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, Minnesota.

出版信息

J Orthop Res. 2019 Jul;37(7):1465-1474. doi: 10.1002/jor.24305. Epub 2019 Apr 25.

Abstract

Skeletal regenerative medicine aims to repair or regenerate skeletal tissues using pharmacotherapies, cell-based treatments, and/or surgical interventions. The field is guided by biological principles active during development, wound healing, aging, and carcinogenesis. Skeletal development and tissue maintenance in adults represent highly intricate biological processes that require continuous adjustments in the expression of cell type-specific genes that generate, remodel, and repair the skeletal extracellular matrix. Errors in these processes can facilitate musculoskeletal disease including cancers or injury. The fundamental molecular mechanisms by which cell type-specific patterns in gene expression are established and retained during successive mitotic divisions require epigenetic control, which we review here. We focus on epigenetic regulatory proteins that control the mammalian epigenome at the level of chromatin with emphasis on proteins that are amenable to drug intervention to mitigate skeletal tissue degeneration (e.g., osteoarthritis and osteoporosis). We highlight recent findings on a number of druggable epigenetic regulators, including DNA methyltransferases (e.g., DNMT1, DNMT3A, and DNMT3B) and hydroxylases (e.g., TET1, TET2, and TET3), histone methyltransferases (e.g., EZH1, EZH2, and DOT1L) as well as histone deacetylases (e.g., HDAC3, HDAC4, and HDAC7) and histone acetyl readers (e.g., BRD4) in relation to the development of bone or cartilage regenerative drug therapies. We also review how histone mutations lead to epigenomic catastrophe and cause musculoskeletal tumors. The combined body of molecular and genetic studies focusing on epigenetic regulators indicates that these proteins are critical for normal skeletogenesis and viable candidate drug targets for short-term local pharmacological strategies to mitigate musculoskeletal tissue degeneration. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1465-1474, 2019.

摘要

骨骼再生医学旨在通过药物治疗、基于细胞的治疗和/或手术干预来修复或再生骨骼组织。该领域的指导原则是在发育、创伤愈合、衰老和癌变过程中发挥作用的生物学原理。成年人的骨骼发育和组织维持代表了高度复杂的生物学过程,需要不断调整生成、重塑和修复骨骼细胞外基质的细胞类型特异性基因的表达。这些过程中的错误会促进包括癌症或损伤在内的肌肉骨骼疾病的发生。在这里,我们回顾了细胞类型特异性基因表达模式在连续有丝分裂分裂过程中建立和保留的基本分子机制。我们专注于控制哺乳动物表观基因组在染色质水平的表观遗传调节蛋白,重点是那些可以通过药物干预来减轻骨骼组织退化(例如,骨关节炎和骨质疏松症)的蛋白。我们强调了一些可药物干预的表观遗传调节剂的最新发现,包括 DNA 甲基转移酶(例如,DNMT1、DNMT3A 和 DNMT3B)和羟化酶(例如,TET1、TET2 和 TET3)、组蛋白甲基转移酶(例如,EZH1、EZH2 和 DOT1L)以及组蛋白去乙酰化酶(例如,HDAC3、HDAC4 和 HDAC7)和组蛋白乙酰基阅读器(例如,BRD4),与骨或软骨再生药物疗法的发展有关。我们还回顾了组蛋白突变如何导致表观基因组灾难并导致肌肉骨骼肿瘤。这些集中在表观遗传调节剂上的分子和遗传研究的综合结果表明,这些蛋白质对于正常的骨骼发生是至关重要的,并且是短期局部药物策略缓解肌肉骨骼组织退化的可行候选药物靶点。©2019 矫形研究学会。由 Wiley 期刊出版公司出版。J Orthop Res 37:1465-1474, 2019.

相似文献

1
Epigenetics as a New Frontier in Orthopedic Regenerative Medicine and Oncology.
J Orthop Res. 2019 Jul;37(7):1465-1474. doi: 10.1002/jor.24305. Epub 2019 Apr 25.
2
Role of Epigenomics in Bone and Cartilage Disease.
J Bone Miner Res. 2019 Feb;34(2):215-230. doi: 10.1002/jbmr.3662. Epub 2019 Feb 4.
4
Pharmaco-epigenomics: On the Road of Translation Medicine.
Adv Exp Med Biol. 2019;1168:31-42. doi: 10.1007/978-3-030-24100-1_3.
5
Regenerative rehabilitation: The role of mechanotransduction in orthopaedic regenerative medicine.
J Orthop Res. 2019 Jun;37(6):1263-1269. doi: 10.1002/jor.24205. Epub 2019 Jan 16.
7
Histone H4 Methyltransferase Suv420h2 Maintains Fidelity of Osteoblast Differentiation.
J Cell Biochem. 2017 May;118(5):1262-1272. doi: 10.1002/jcb.25787. Epub 2016 Nov 30.
8
Epigallocatechin gallate inhibits HeLa cells by modulation of epigenetics and signaling pathways.
3 Biotech. 2020 Nov;10(11):484. doi: 10.1007/s13205-020-02473-1. Epub 2020 Oct 23.
9
Editing the Epigenome: Reshaping the Genomic Landscape.
Annu Rev Genomics Hum Genet. 2018 Aug 31;19:43-71. doi: 10.1146/annurev-genom-083117-021632. Epub 2018 May 31.
10
The Epigenomic Landscape in Osteoarthritis.
Curr Rheumatol Rep. 2017 Jun;19(6):30. doi: 10.1007/s11926-017-0661-9.

引用本文的文献

1
Epigenetic Regulation of Bone Healing: Implications for Fracture Repair and Clinical Treatment Strategies.
Yale J Biol Med. 2025 Jun 30;98(2):159-170. doi: 10.59249/HSYL8000. eCollection 2025 Jun.
3
Targeting epigenetic alterations in cancer stem cells.
Front Mol Med. 2022 Sep 20;2:1011882. doi: 10.3389/fmmed.2022.1011882. eCollection 2022.
4
Protein arginine methyltransferases PRMT1, PRMT4/CARM1 and PRMT5 have distinct functions in control of osteoblast differentiation.
Bone Rep. 2023 Jul 25;19:101704. doi: 10.1016/j.bonr.2023.101704. eCollection 2023 Dec.
7
Novel insights into the METTL3-METTL14 complex in musculoskeletal diseases.
Cell Death Discov. 2023 May 18;9(1):170. doi: 10.1038/s41420-023-01435-9.
8
Bioengineering extracellular vesicles: smart nanomaterials for bone regeneration.
J Nanobiotechnology. 2023 Apr 27;21(1):137. doi: 10.1186/s12951-023-01895-2.
9
The epigenetic regulator BRD4 is required for myofibroblast differentiation of knee fibroblasts.
J Cell Biochem. 2023 Feb;124(2):320-334. doi: 10.1002/jcb.30368. Epub 2023 Jan 17.
10
Bioinformatics-based analysis of potential candidates chromatin regulators for immune infiltration in osteoarthritis.
BMC Musculoskelet Disord. 2022 Dec 23;23(1):1123. doi: 10.1186/s12891-022-06098-8.

本文引用的文献

1
Targeting epigenetic modifications in cancer therapy: erasing the roadmap to cancer.
Nat Med. 2019 Mar;25(3):403-418. doi: 10.1038/s41591-019-0376-8. Epub 2019 Mar 6.
3
Enhancer of zeste homolog 2 () controls bone formation and cell cycle progression during osteogenesis in mice.
J Biol Chem. 2018 Aug 17;293(33):12894-12907. doi: 10.1074/jbc.RA118.002983. Epub 2018 Jun 13.
4
Ablation of Dnmt3b in chondrocytes suppresses cell maturation during embryonic development.
J Cell Biochem. 2018 Jul;119(7):5852-5863. doi: 10.1002/jcb.26775. Epub 2018 Apr 10.
5
Oncohistones: drivers of pediatric cancers.
Genes Dev. 2017 Dec 1;31(23-24):2313-2324. doi: 10.1101/gad.309013.117.
7
Loss of Dnmt3b in Chondrocytes Leads to Delayed Endochondral Ossification and Fracture Repair.
J Bone Miner Res. 2018 Feb;33(2):283-297. doi: 10.1002/jbmr.3305. Epub 2017 Nov 2.
8
BRD4 has dual effects on the HMGB1 and NF-κB signalling pathways and is a potential therapeutic target for osteoarthritis.
Biochim Biophys Acta Mol Basis Dis. 2017 Dec;1863(12):3001-3015. doi: 10.1016/j.bbadis.2017.08.009. Epub 2017 Aug 24.
9
Oncogenic Activities of IDH1/2 Mutations: From Epigenetics to Cellular Signaling.
Trends Cell Biol. 2017 Oct;27(10):738-752. doi: 10.1016/j.tcb.2017.06.002. Epub 2017 Jul 12.
10
DOT1L safeguards cartilage homeostasis and protects against osteoarthritis.
Nat Commun. 2017 Jun 19;8:15889. doi: 10.1038/ncomms15889.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验