Suppr超能文献

使用深度神经网络预测蛋白质金属结合位点。

Prediction of Protein Metal Binding Sites Using Deep Neural Networks.

机构信息

Department of Computer Engineering, Başkent University, Fatih Sultan Mahallesi Eskişehir Yolu 18. km, 06790, Etimesgut, Ankara, Turkey.

Faculty of Computer Sciences, Østfold University College, Halden, Norway.

出版信息

Mol Inform. 2019 Jul;38(7):e1800169. doi: 10.1002/minf.201800169. Epub 2019 Apr 12.

Abstract

Metals have crucial roles for many physiological, pathological and diagnostic processes. Metal binding proteins or metalloproteins are important for metabolism functions. The proteins that reach the three-dimensional structure by folding show which vital function is fulfilled. The prediction of metal-binding in proteins will be considered as a step-in function assignment for new proteins, which helps to obtain functional proteins in genomic studies, is critical to protein function annotation and drug discovery. Computational predictions made by using machine learning methods from the data obtained from amino acid sequences are widely used in the protein metal-binding and various bioinformatics fields. In this work, we present three different deep learning architectures for prediction of metal-binding of Histidines (HIS) and Cysteines (CYS) amino acids. These architectures are as follows: 2D Convolutional Neural Network, Long-Short Term Memory and Recurrent Neural Network. Their comparison is carried out on the three different sets of attributes derived from a public dataset of protein sequences. These three sets of features extracted from the protein sequence were obtained using the PAM scoring matrix, protein composition server, and binary representation methods. The results show that a better performance for prediction of protein metal- binding sites is obtained through Convolutional Neural Network architecture.

摘要

金属在许多生理、病理和诊断过程中都起着至关重要的作用。金属结合蛋白或金属蛋白对于代谢功能很重要。通过折叠达到三维结构的蛋白质显示出其实现的重要功能。对蛋白质中金属结合的预测将被视为新蛋白质功能分配的一个步骤,这有助于在基因组研究中获得功能蛋白质,对于蛋白质功能注释和药物发现至关重要。使用从氨基酸序列获得的数据的机器学习方法进行的计算预测广泛应用于蛋白质金属结合和各种生物信息学领域。在这项工作中,我们提出了三种不同的深度学习架构,用于预测组氨酸(HIS)和半胱氨酸(CYS)氨基酸的金属结合。这些架构如下:2D 卷积神经网络、长短时记忆和递归神经网络。它们在三个不同的属性集上进行了比较,这些属性集是从蛋白质序列的公共数据集派生而来的。从蛋白质序列中提取的这三组特征是使用 PAM 评分矩阵、蛋白质组成服务器和二进制表示方法获得的。结果表明,通过卷积神经网络架构可以更好地预测蛋白质金属结合位点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验