Wells Andrew J, Hitchen Joseph R, Parkinson James R G
Department of Physics , University of Oxford , Clarendon Lab , Parks Road , Oxford OX1 3PU , UK.
Philos Trans A Math Phys Eng Sci. 2019 Jun 3;377(2146):20180165. doi: 10.1098/rsta.2018.0165.
Sea ice is a reactive porous medium of ice crystals and liquid brine, which is an example of a mushy layer. The phase behaviour of sea ice controls the evolving material properties and fluid transport through the porous ice, with consequences for ice growth, brine drainage from the ice to provide buoyancy fluxes for the polar oceans, and sea-ice biogeochemistry. We review work on the growth of mushy layers and convective flows driven by density gradients in the interstitial fluid. After introducing the fundamentals of mushy-layer theory, we discuss the effective thermal properties, including the impact of salt transport on mushy-layer growth. We present a simplified model for diffusively controlled growth of mushy layers with modest cooling versus the solutal freezing-point depression. For growth from a cold isothermal boundary, salt diffusion modifies mushy-layer growth by around 5-20% depending on the far-field temperature and salinity. We also review work on the onset, spatial localization and nonlinear development of convective flows in mushy layers, highlighting recent work on transient solidification and models of nonlinear convection with dissolved solid-free brine channels. Finally, future research opportunities are identified, motivated by geophysical observations of ice growth. This article is part of the theme issue 'The physics and chemistry of ice: scaffolding across scales, from the viability of life to the formation of planets'.
海冰是冰晶和液态卤水组成的反应性多孔介质,是糊状层的一个例子。海冰的相行为控制着不断变化的材料特性以及通过多孔冰的流体传输,对冰的生长、冰中卤水排出以向极地海洋提供浮力通量以及海冰生物地球化学产生影响。我们综述了关于由间隙流体中的密度梯度驱动的糊状层生长和对流流动的研究工作。在介绍了糊状层理论的基本原理之后,我们讨论了有效热性质,包括盐传输对糊状层生长的影响。我们提出了一个简化模型,用于描述在适度冷却与溶质冰点降低情况下糊状层的扩散控制生长。对于从冷等温边界生长的情况,根据远场温度和盐度,盐扩散会使糊状层生长改变约5% - 20%。我们还综述了关于糊状层中对流流动的起始、空间定位和非线性发展的研究工作,重点介绍了关于瞬态凝固以及具有溶解的无固体卤水通道的非线性对流模型的近期研究。最后,受冰生长的地球物理观测启发,确定了未来的研究机会。本文是主题为“冰的物理和化学:跨越尺度的框架,从生命的可行性到行星的形成”的一部分。