IEEE Trans Neural Syst Rehabil Eng. 2019 May;27(5):947-955. doi: 10.1109/TNSRE.2019.2910165. Epub 2019 Apr 11.
The freezing of gait (FoG) is a common type of motor dysfunction in advanced Parkinson's disease (PD) associated with falls. Over the last decade, a significant amount of studies has been focused on detecting FoG episodes in clinical and home environments. Yet, there remains a paucity of techniques regarding real-time prediction of FoG before its occurrence. In this paper, a new algorithm was employed to define the best combination of sensor position, axis, sampling window length, and features to predict FoG. We hypothesized that gait deterioration before FoG onsets can be discriminated from normal gait using statistical analysis of features from successive windows of data collected from lower-limb accelerometers. We defined a new performance measure, "predictivity", to compare the number of correctly predicted FoG events among different combinations. We characterized the system performance using data from 10 PD patients, who experienced FoG while performing several walking tasks in a lab environment. The analysis of 120 different combinations revealed that prediction of FoG can be realized by using an individual shank sensor and sample entropy calculated from the horizontal forward axis with window length of 2 s (88.8%, 92.5%, and 89.0% for average predictivity, sensitivity, and specificity, respectively).
冻结步态(FoG)是一种常见的运动功能障碍,发生在晚期帕金森病(PD)患者中,与跌倒有关。在过去的十年中,大量研究集中在检测临床和家庭环境中的 FoG 发作。然而,对于 FoG 发生前的实时预测技术仍然很少。在本文中,我们采用了一种新的算法来确定传感器位置、轴、采样窗口长度和特征的最佳组合,以预测 FoG。我们假设可以使用来自下肢加速度计连续数据窗口的特征的统计分析来区分 FoG 发作前的步态恶化和正常步态。我们定义了一个新的性能指标“可预测性”,以比较不同组合中正确预测 FoG 事件的数量。我们使用来自 10 名 PD 患者的数据来描述系统性能,这些患者在实验室环境中执行多项行走任务时经历了 FoG。对 120 种不同组合的分析表明,可以通过使用单个小腿传感器和从水平前轴计算的样本熵(窗口长度为 2 秒)来实现 FoG 的预测(平均可预测性、敏感性和特异性分别为 88.8%、92.5%和 89.0%)。