Suppr超能文献

使用卷积神经网络学习器官软组织行为用于手术导航。

Learning soft tissue behavior of organs for surgical navigation with convolutional neural networks.

机构信息

National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.

Department for Visceral, Thoracic and Vascular Surgery, University Hospital, Technical University Dresden, Dresden, Germany.

出版信息

Int J Comput Assist Radiol Surg. 2019 Jul;14(7):1147-1155. doi: 10.1007/s11548-019-01965-7. Epub 2019 Apr 16.

Abstract

PURPOSE

In surgical navigation, pre-operative organ models are presented to surgeons during the intervention to help them in efficiently finding their target. In the case of soft tissue, these models need to be deformed and adapted to the current situation by using intra-operative sensor data. A promising method to realize this are real-time capable biomechanical models.

METHODS

We train a fully convolutional neural network to estimate a displacement field of all points inside an organ when given only the displacement of a part of the organ's surface. The network trains on entirely synthetic data of random organ-like meshes, which allows us to use much more data than is otherwise available. The input and output data are discretized into a regular grid, allowing us to fully utilize the capabilities of convolutional operators and to train and infer in a highly parallelized manner.

RESULTS

The system is evaluated on in-silico liver models, phantom liver data and human in-vivo breathing data. We test the performance with varying material parameters, organ shapes and amount of visible surface. Even though the network is only trained on synthetic data, it adapts well to the various cases and gives a good estimation of the internal organ displacement. The inference runs at over 50 frames per second.

CONCLUSION

We present a novel method for training a data-driven, real-time capable deformation model. The accuracy is comparable to other registration methods, it adapts very well to previously unseen organs and does not need to be re-trained for every patient. The high inferring speed makes this method useful for many applications such as surgical navigation and real-time simulation.

摘要

目的

在手术导航中,术前器官模型在手术过程中呈现给外科医生,以帮助他们有效地找到目标。在软组织的情况下,这些模型需要通过使用术中传感器数据进行变形和适应当前情况。实现这一目标的一种很有前途的方法是实时生物力学模型。

方法

我们训练了一个全卷积神经网络,仅在给定器官表面一部分位移的情况下,估计器官内部所有点的位移场。该网络在完全随机器官样网格的合成数据上进行训练,这使我们可以使用比以往更多的数据。输入和输出数据被离散化为规则网格,这使我们能够充分利用卷积算子的功能,并以高度并行化的方式进行训练和推断。

结果

该系统在计算机模拟的肝脏模型、肝脏体模数据和人体呼吸数据上进行了评估。我们通过改变材料参数、器官形状和可见表面的数量来测试性能。尽管网络仅在合成数据上进行训练,但它能很好地适应各种情况,并能很好地估计内部器官的位移。推断速度超过 50 帧/秒。

结论

我们提出了一种新的训练数据驱动的实时变形模型的方法。其准确性可与其他配准方法相媲美,它非常适应以前未见过的器官,并且不需要为每个患者重新训练。高推断速度使得该方法在手术导航和实时模拟等许多应用中非常有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验