Suppr超能文献

基于图传播的深度分组全卷积网络协同显著性检测

Deep Group-wise Fully Convolutional Network for Co-saliency Detection with Graph Propagation.

作者信息

Wei Lina, Zhao Shanshan, Bourahla Omar El Farouk, Li Xi, Wu Fei, Zhuang Yueting

出版信息

IEEE Trans Image Process. 2019 Apr 15. doi: 10.1109/TIP.2019.2909649.

Abstract

A key problem in co-saliency detection is how to effectively model the interactive relationship of a whole image group and the individual perspective of each image in a united data-driven manner. In this paper, we propose a group-wise deep co-saliency detection approach to address the co-saliency object discovery problem based on the fully convolutional network (FCN). The proposed approach captures the group-wise interaction information for group images by learning a semantics-aware image representation based on a convolutional neural network, which adaptively learns the group-wise features for co-saliency detection. Furthermore, the proposed approach discovers the collaborative and interactive relationships between group-wise feature representation and single image individual feature representation, and model this in a collaborative learning framework. Then, we set up a unified deep learning scheme to jointly optimize the process of group-wise feature representation learning and the collaborative learning, leading to more reliable and robust co-saliency detection results. Finally, we present a graph Laplacian regularized nonlinear regression model for saliency refinement. Experimental results demonstrate the effectiveness of our approach in comparison with the state-of-the-art approaches.

摘要

协同显著性检测中的一个关键问题是如何以统一的数据驱动方式有效地对整个图像组的交互关系以及每个图像的个体视角进行建模。在本文中,我们提出了一种基于全卷积网络(FCN)的分组深度协同显著性检测方法,以解决协同显著性目标发现问题。所提出的方法通过基于卷积神经网络学习语义感知图像表示来捕捉组图像的分组交互信息,该表示自适应地学习用于协同显著性检测的分组特征。此外,所提出的方法发现分组特征表示与单图像个体特征表示之间的协作和交互关系,并在协作学习框架中对此进行建模。然后,我们建立了一个统一的深度学习方案,以联合优化分组特征表示学习和协作学习的过程,从而得到更可靠、更稳健的协同显著性检测结果。最后,我们提出了一种用于显著性细化的图拉普拉斯正则化非线性回归模型。实验结果表明,与现有方法相比,我们的方法是有效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验