Suppr超能文献

石墨与石墨烯精灵圈:一种用于形成纳米围栏的自下而上方法。

Graphite and Graphene Fairy Circles: A Bottom-Up Approach for the Formation of Nanocorrals.

作者信息

Phan Thanh Hai, Van Gorp Hans, Li Zhi, Trung Huynh Thi Mien, Fujita Yasuhiko, Verstraete Lander, Eyley Samuel, Thielemans Wim, Uji-I Hiroshi, Hirsch Brandon E, Mertens Stijn F L, Greenwood John, Ivasenko Oleksandr, De Feyter Steven

机构信息

Department of Chemistry, Division of Molecular Imaging and Photonics , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium.

Department of Physics , Quy Nhon University , 170 An Duong Vuong , Quy Nhon , Vietnam.

出版信息

ACS Nano. 2019 May 28;13(5):5559-5571. doi: 10.1021/acsnano.9b00439. Epub 2019 Apr 30.

Abstract

A convenient covalent functionalization approach and nanopatterning method of graphite and graphene is developed. In contrast to expectations, electrochemically activated dediazotization of a mixture of two aryl diazonium compounds in aqueous media leads to a spatially inhomogeneous functionalization of graphitic surfaces, creating covalently modified surfaces with quasi-uniform spaced islands of pristine graphite or graphene, coined nanocorrals. Cyclic voltammetry and chronoamperometry approaches are compared. The average diameter (45-130 nm) and surface density (20-125 corrals/μm) of these nanocorrals are tunable. These chemically modified nanostructured graphitic (CMNG) surfaces are characterized by atomic force microscopy, scanning tunneling microscopy, Raman spectroscopy and microscopy, and X-ray photoelectron spectroscopy. Mechanisms leading to the formation of these CMNG surfaces are discussed. The potential of these surfaces to investigate supramolecular self-assembly and on-surface reactions under nanoconfinement conditions is demonstrated.

摘要

开发了一种便捷的石墨和石墨烯共价功能化方法及纳米图案化方法。与预期相反,在水性介质中对两种芳基重氮化合物的混合物进行电化学活化脱重氮化反应会导致石墨表面的空间不均匀功能化,从而形成具有准均匀间隔的原始石墨或石墨烯岛的共价修饰表面,即所谓的纳米围栏。比较了循环伏安法和计时电流法。这些纳米围栏的平均直径(45 - 130纳米)和表面密度(20 - 125个围栏/微米)是可调的。通过原子力显微镜、扫描隧道显微镜、拉曼光谱和显微镜以及X射线光电子能谱对这些化学修饰的纳米结构石墨(CMNG)表面进行了表征。讨论了导致这些CMNG表面形成的机制。展示了这些表面在纳米限制条件下研究超分子自组装和表面反应的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验