College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
Technology Center, China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou, 310009, China.
Appl Microbiol Biotechnol. 2019 Jun;103(11):4499-4510. doi: 10.1007/s00253-019-09800-4. Epub 2019 Apr 23.
Pseudomonas sp. JY-Q was isolated from nicotine-rich environment and could degrade and tolerate high-content nicotine. Its specific genetic architecture comprised duplicated homologous nicotine-degrading clusters for different functional modules on the whole pathway. Its adaptive and genomic properties caused our concern whether the duplicated homologous gene clusters confer additive effects on nicotine degradation and result in strain JY-Q strong capability. After deletion of representative genes from duplicated homologous gene clusters of upstream module Nic1, midstream module Spm, and downstream module Nic2, the nicotine degradation efficiency of the wild type and mutant strains were examined. As the first genes of clusters Nic1-1 and Nic1-2, nicA2 and nox are both involved in nicotine degradation, but nox exhibited more contribution to nicotine metabolism due to the higher transcriptional amount of nox than that of nicA2. Likewise, the sub-clusters spm1 and spm2 showed additive effect on nicotine metabolism. As two hpo-like genes of clusters Nic2-1 and Nic2-2, hpo1, and hpo2 also showed additive effect on the nicotine degrading, but hpo1 provided more contribution than hpo2. The third hpo-like gene in cluster NA (nicotinic acid degrading), nicX is not necessary for 2,5-dihydroxypyridine transformation when hpo1 and hpo2 exist. A variety of transposases and integrases observed around Nic1 and Nic2 cluster genes suggests that the duplicated genes could evolve from horizontal gene transfer (HGT)-related dissemination. This study provide an insight into a novel adaptability mechanism of strains in extreme environment such as high nicotine concentration, and potential novel targets to enhance strain synthesis/degradation ability for future applications.
假单胞菌 JY-Q 是从富含尼古丁的环境中分离出来的,可以降解并耐受高含量的尼古丁。它的特定遗传结构包括整个途径中不同功能模块的重复同源尼古丁降解簇。其适应性和基因组特性引起了我们的关注,即重复的同源基因簇是否对尼古丁降解具有加性效应,并导致菌株 JY-Q 具有很强的能力。在删除上游模块 Nic1、中流模块 Spm 和下游模块 Nic2 的重复同源基因簇中的代表性基因后,考察了野生型和突变菌株的尼古丁降解效率。作为簇 Nic1-1 和 Nic1-2 的第一个基因,nicA2 和nox 都参与尼古丁的降解,但由于 nox 的转录量高于 nicA2,nox 对尼古丁代谢的贡献更大。同样,亚簇 spm1 和 spm2 对尼古丁代谢表现出相加效应。作为簇 Nic2-1 和 Nic2-2 的两个 hpo 样基因,hpo1 和 hpo2 对尼古丁降解也表现出相加效应,但 hpo1 的贡献大于 hpo2。簇 NA(烟酸降解)中的第三个 hpo 样基因 nicX 在 hpo1 和 hpo2 存在时不需要 2,5-二羟基吡啶转化。在 Nic1 和 Nic2 簇基因周围观察到的各种转座酶和整合酶表明,重复基因可能是由水平基因转移(HGT)相关传播进化而来。本研究为高尼古丁浓度等极端环境中菌株的新型适应性机制提供了深入了解,并为未来应用提供了增强菌株合成/降解能力的潜在新靶点。