Suppr超能文献

体内小核酸药物与带电荷匹配的嵌段阳离子的对接以靶向癌症。

In vivo rendezvous of small nucleic acid drugs with charge-matched block catiomers to target cancers.

机构信息

Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.

Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.

出版信息

Nat Commun. 2019 Apr 24;10(1):1894. doi: 10.1038/s41467-019-09856-w.

Abstract

Stabilisation of fragile oligonucleotides, typically small interfering RNA (siRNA), is one of the most critical issues for oligonucleotide therapeutics. Many previous studies encapsulated oligonucleotides into 100-nm nanoparticles. However, such nanoparticles inevitably accumulate in liver and spleen. Further, some intractable cancers, e.g., tumours in pancreas and brain, have inherent barrier characteristics preventing the penetration of such nanoparticles into tumour microenvironments. Herein, we report an alternative approach to cancer-targeted oligonucleotide delivery using a Y-shaped block catiomer (YBC) with precisely regulated chain length. Notably, the number of positive charges in YBC is adjusted to match that of negative charges in each oligonucleotide strand (i.e., 20). The YBC rendezvouses with a single oligonucleotide in the bloodstream to generate a dynamic ion-pair, termed unit polyion complex (uPIC). Owing to both significant longevity in the bloodstream and appreciably small size (18 nm), the uPIC efficiently delivers oligonucleotides into pancreatic tumour and brain tumour models, exerting significant antitumour activity.

摘要

稳定脆弱的寡核苷酸,通常是小干扰 RNA(siRNA),是寡核苷酸治疗中最关键的问题之一。许多先前的研究将寡核苷酸包裹在~100nm 的纳米颗粒中。然而,这种纳米颗粒不可避免地在肝脏和脾脏中积累。此外,一些难治性癌症,例如胰腺和脑部的肿瘤,具有内在的屏障特性,阻止了这些纳米颗粒进入肿瘤微环境。在此,我们报告了一种使用具有精确调控链长的 Y 形嵌段聚电解质(YBC)进行癌症靶向寡核苷酸递送的替代方法。值得注意的是,YBC 中的正电荷数量被调整为与每个寡核苷酸链上的负电荷数量相匹配(即 20)。YBC 在血液中与单个寡核苷酸会合,生成一种动态离子对,称为单位聚离子复合物(uPIC)。由于在血液中的寿命显著延长且尺寸相当小(约 18nm),uPIC 能够有效地将寡核苷酸递送到胰腺肿瘤和脑肿瘤模型中,发挥显著的抗肿瘤活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e8/6482185/6d2ec6e6d987/41467_2019_9856_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验