Duruflé Harold, Ranocha Philippe, Mbadinga Mbadinga Duchesse Lacour, Déjean Sébastien, Bonhomme Maxime, San Clemente Hélène, Viudes Sébastien, Eljebbawi Ali, Delorme-Hinoux Valerie, Sáez-Vásquez Julio, Reichheld Jean-Philippe, Escaravage Nathalie, Burrus Monique, Dunand Christophe
Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Castanet Tolosan, France.
Institut de Mathématiques de Toulouse, Université de Toulouse, CNRS, UPS, Toulouse, France.
Front Plant Sci. 2019 Apr 9;10:430. doi: 10.3389/fpls.2019.00430. eCollection 2019.
Natural variations help in identifying genetic mechanisms of morphologically and developmentally complex traits. Mountainous habitats provide an altitudinal gradient where one species encounters different abiotic conditions. We report the study of 341 individuals of derived from 30 natural populations not belonging to the 1001 genomes, collected at increasing altitudes, between 200 and 1800 m in the Pyrenees. Class III peroxidases and ribosomal RNA sequences were used as markers to determine the putative genetic relationships among these populations along their altitudinal gradient. Using Bayesian-based statistics and phylogenetic analyses, these Pyrenean populations appear with significant divergence from the other regional accessions from 1001 genome (i.e., from north Spain or south France). Individuals of these populations exhibited varying phenotypic changes, when grown at sub-optimal temperature (22 vs. 15°C). These phenotypic variations under controlled conditions reflected intraspecific morphological variations. This study could bring new information regarding the west European population structure of and its phenotypic variations at different temperatures. The integrative analysis combining genetic, phenotypic variation and environmental datasets is used to analyze the acclimation of population in response to temperature changes. Regarding their geographical proximity and environmental diversity, these populations represent a tool of choice for studying plant response to temperature variation.
-Studying the natural diversity of in the Pyrenees mountains helps to understand European population structure and to evaluate the phenotypic trait variation in response to climate change.
自然变异有助于识别形态和发育复杂性状的遗传机制。山区栖息地提供了一个海拔梯度,在此梯度中一个物种会遇到不同的非生物条件。我们报告了对341个个体的研究,这些个体来自30个不属于1001基因组的自然种群,在比利牛斯山脉海拔200至1800米处逐渐升高的海拔高度采集。III类过氧化物酶和核糖体RNA序列用作标记,以确定这些种群沿海拔梯度的假定遗传关系。使用基于贝叶斯的统计和系统发育分析,这些比利牛斯山脉种群与来自1001基因组的其他区域种质(即来自西班牙北部或法国南部)有显著差异。当在次优温度(22℃与15℃)下生长时,这些种群的个体表现出不同的表型变化。在受控条件下的这些表型变异反映了种内形态变异。这项研究可以带来有关[物种名称未给出]的西欧种群结构及其在不同温度下表型变异的新信息。结合遗传、表型变异和环境数据集的综合分析用于分析种群对温度变化的适应性。鉴于它们的地理接近性和环境多样性,这些种群是研究植物对温度变化响应的理想工具。