Institut d'Informatica i Aplicacions. Universitat de Girona, Spain.
Servicio de Endocrinología y Nutrición. Hospital Universitari Mutua de Terrassa, Terrassa, Spain.
Int J Med Inform. 2019 Jun;126:1-8. doi: 10.1016/j.ijmedinf.2019.03.008. Epub 2019 Mar 11.
Predicting insulin-induced postprandial hypoglycemic events is critical for the safety of type 1 diabetes patients because an early warning of hypoglycemia facilitates correction of the insulin bolus before its administration. The postprandial hypoglycemic event counts can be lowered by reducing the size of the bolus based on a reliable prediction but at the cost of increasing the average blood glucose.
We developed a method for predicting postprandial hypoglycemia using machine learning techniques personalized to each patient. The proposed system enables on-line therapeutic decision making for patients using a sensor augmented pump therapy. Two risk-based approaches were developed for a window of 240 min after the meal/bolus, and they were tested based on real retrospective data from 10 patients using 70 mg/dL and 54 mg/dL as thresholds according to the consensus for Level 1 and Level 2 hypoglycemia, respectively. Due to the small size of the patient cohort, we trained personalized models for each patient.
The median specificity and sensitivity were 79% and 71% for Level 1 hypoglycemia, respectively, and 81% and 77% for Level 2.
The results demonstrated that it is feasible to anticipate hypoglycemic events with a reasonable false-positive rate. The accuracy of the results and the trade-off between performance metrics allow its use in decision support systems for patients who wear insulin pumps.
预测 1 型糖尿病患者餐后低血糖事件对于患者的安全至关重要,因为低血糖的早期预警可以在给予胰岛素之前及时纠正胰岛素剂量。但基于可靠的预测减少推注剂量会降低餐后低血糖事件的发生次数,同时也会增加平均血糖水平。
我们开发了一种使用机器学习技术针对每位患者进行个体化预测餐后低血糖的方法。该系统通过传感器增强的泵治疗,为患者提供在线治疗决策。针对餐后/推注后 240 分钟的窗口,我们开发了两种基于风险的方法,并根据共识将阈值分别设定为 70mg/dL 和 54mg/dL,分别用于 1 级和 2 级低血糖,使用来自 10 名患者的 70mg/dL 和 54mg/dL 的真实回顾性数据对其进行了测试。由于患者队列规模较小,我们为每位患者训练了个性化模型。
对于 1 级低血糖,中位特异性和敏感性分别为 79%和 71%,对于 2 级低血糖,中位特异性和敏感性分别为 81%和 77%。
结果表明,以合理的假阳性率预测低血糖事件是可行的。结果的准确性和性能指标之间的权衡允许其在佩戴胰岛素泵的患者的决策支持系统中使用。