Suppr超能文献

脂质双分子层膜中临界孔径的耗散粒子动力学模拟

Dissipative particle dynamics simulation of critical pore size in a lipid bilayer membrane.

作者信息

Bowman Clark, Chaplain Mark, Matzavinos Anastasios

机构信息

Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.

School of Mathematics and Statistics, University of St Andrews, St Andrews KY16 9SS, UK.

出版信息

R Soc Open Sci. 2019 Mar 6;6(3):181657. doi: 10.1098/rsos.181657. eCollection 2019 Mar.

Abstract

We investigate with computer simulations the critical radius of pores in a lipid bilayer membrane. Ilton (Ilton 2016 , 257801 (doi:10.1103/PhysRevLett.117.257801)) recently showed that nucleated pores in a homopolymer film can increase or decrease in size, depending on whether they are larger or smaller than a critical size which scales linearly with film thickness. Using dissipative particle dynamics, a particle-based simulation method, we investigate the same scenario for a lipid bilayer membrane whose structure is determined by lipid-water interactions. We simulate a perforated membrane in which holes larger than a critical radius grow, while holes smaller than the critical radius close, as in the experiment of Ilton (Ilton 2016 , 257801 (doi:10.1103/PhysRevLett.117.257801)). By altering key system parameters such as the number of particles per lipid and the periodicity, we also describe scenarios in which pores of any initial size can seal or even remain stable, showing a fundamental difference in the behaviour of lipid membranes from polymer films.

摘要

我们通过计算机模拟研究了脂质双分子层膜中孔的临界半径。伊尔通(伊尔通,2016,257801(doi:10.1103/PhysRevLett.117.257801))最近表明,均聚物薄膜中的成核孔尺寸可以增大或减小,这取决于它们是大于还是小于与薄膜厚度呈线性比例的临界尺寸。我们使用耗散粒子动力学(一种基于粒子的模拟方法),对结构由脂质 - 水相互作用决定的脂质双分子层膜研究相同的情况。我们模拟了一个穿孔膜,其中大于临界半径的孔会扩大,而小于临界半径的孔会闭合,正如伊尔通(伊尔通,2016,257801(doi:10.1103/PhysRevLett.117.257801))的实验那样。通过改变诸如每个脂质的粒子数和周期性等关键系统参数,我们还描述了任何初始尺寸的孔都可以封闭甚至保持稳定的情况,这表明脂质膜的行为与聚合物薄膜存在根本差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f82/6458407/dde3e5817160/rsos181657-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验