Suppr超能文献

基于计算模型的临床实验规划框架——在血管适应性生物学中的应用

A Computational Model-Based Framework to Plan Clinical Experiments - an Application to Vascular Adaptation Biology.

作者信息

Casarin Stefano, Berceli Scott A, Garbey Marc

机构信息

LASIE UMR 7356 CNRS, University of La Rochelle, La Rochelle, France.

Center for Computational Surgery, Houston Methodist Research Institute, Houston, TX, USA.

出版信息

Comput Sci ICCS. 2018 Jun;10860:352-362. doi: 10.1007/978-3-319-93698-7_27. Epub 2018 Jun 12.

Abstract

Several computational models have been developed in order to improve the outcome of Vein Graft Bypasses in response to arterial occlusions and they all share a common property: their accuracy relies on a winning choice of the coefficients' value related to biological functions that drive them. Our goal is to optimize the retrieval of these unknown coefficients on the base of experimental data and accordingly, as biological experiments are noisy in terms of statistical analysis and the models are typically stochastic and complex, this work wants first to elucidate which experimental measurements might be sufficient to retrieve the targeted coefficients and second how many specimens would constitute a good dataset to guarantee a sufficient level of accuracy. Since experiments are often costly and time consuming, the planning stage is critical to the success of the operation and, on the base of this consideration, the present work shows how, thanks to an use of a computational model of vascular adaptation, it is possible to estimate in advance the entity and the quantity of resources needed in order to efficiently reproduce the experimental reality.

摘要

为了改善静脉移植搭桥术应对动脉阻塞的效果,已经开发了几种计算模型,它们都有一个共同特点:其准确性依赖于与驱动模型的生物学功能相关的系数值的正确选择。我们的目标是基于实验数据优化这些未知系数的检索,因此,鉴于生物学实验在统计分析方面存在噪声,且模型通常具有随机性和复杂性,这项工作首先要阐明哪些实验测量可能足以检索目标系数,其次要确定多少样本构成一个良好的数据集以保证足够的准确度。由于实验通常成本高且耗时,规划阶段对操作的成功至关重要,基于这一考虑,本研究展示了如何通过使用血管适应计算模型,提前估计有效再现实验实际情况所需的资源量和数量。

相似文献

1
A Computational Model-Based Framework to Plan Clinical Experiments - an Application to Vascular Adaptation Biology.
Comput Sci ICCS. 2018 Jun;10860:352-362. doi: 10.1007/978-3-319-93698-7_27. Epub 2018 Jun 12.
2
A Twofold Usage of an Agent-Based Model of Vascular Adaptation to Design Clinical Experiments.
J Comput Sci. 2018 Nov;29:59-69. doi: 10.1016/j.jocs.2018.09.013. Epub 2018 Oct 4.
3
A versatile hybrid agent-based, particle and partial differential equations method to analyze vascular adaptation.
Biomech Model Mechanobiol. 2019 Feb;18(1):29-44. doi: 10.1007/s10237-018-1065-0. Epub 2018 Aug 9.
5
Modelling-based experiment retrieval: a case study with gene expression clustering.
Bioinformatics. 2016 May 1;32(9):1388-94. doi: 10.1093/bioinformatics/btv762. Epub 2016 Jan 6.
7
Knowledge-light adaptation approaches in case-based reasoning for radiotherapy treatment planning.
Artif Intell Med. 2016 Mar;68:17-28. doi: 10.1016/j.artmed.2016.01.006. Epub 2016 Feb 9.
8
A boosting framework for visuality-preserving distance metric learning and its application to medical image retrieval.
IEEE Trans Pattern Anal Mach Intell. 2010 Jan;32(1):30-44. doi: 10.1109/TPAMI.2008.273.

引用本文的文献

1
A Twofold Usage of an Agent-Based Model of Vascular Adaptation to Design Clinical Experiments.
J Comput Sci. 2018 Nov;29:59-69. doi: 10.1016/j.jocs.2018.09.013. Epub 2018 Oct 4.
2
A versatile hybrid agent-based, particle and partial differential equations method to analyze vascular adaptation.
Biomech Model Mechanobiol. 2019 Feb;18(1):29-44. doi: 10.1007/s10237-018-1065-0. Epub 2018 Aug 9.

本文引用的文献

1
Linking gene dynamics to vascular hyperplasia - Toward a predictive model of vein graft adaptation.
PLoS One. 2017 Nov 30;12(11):e0187606. doi: 10.1371/journal.pone.0187606. eCollection 2017.
2
Vascular Adaptation: Pattern Formation and Cross Validation between an Agent Based Model and a Dynamical System.
J Theor Biol. 2017 Sep 21;429:149-163. doi: 10.1016/j.jtbi.2017.06.013. Epub 2017 Jun 21.
3
Hemodynamic Influence on Smooth Muscle Cell Kinetics and Phenotype During Early Vein Graft Adaptation.
Ann Biomed Eng. 2017 Mar;45(3):644-655. doi: 10.1007/s10439-016-1725-0. Epub 2016 Sep 13.
4
Agent-Based Modeling of Cancer Stem Cell Driven Solid Tumor Growth.
Methods Mol Biol. 2016;1516:335-346. doi: 10.1007/7651_2016_346.
5
Vein graft failure.
J Vasc Surg. 2015 Jan;61(1):203-16. doi: 10.1016/j.jvs.2013.08.019. Epub 2013 Oct 3.
6
A dynamical system that describes vein graft adaptation and failure.
J Theor Biol. 2013 Nov 7;336:209-20. doi: 10.1016/j.jtbi.2013.07.006. Epub 2013 Jul 16.
7
Computational model for simulation of vascular adaptation following vascular access surgery in haemodialysis patients.
Comput Methods Biomech Biomed Engin. 2014;17(12):1358-67. doi: 10.1080/10255842.2012.745857. Epub 2013 Jan 3.
8
A methodology for performing global uncertainty and sensitivity analysis in systems biology.
J Theor Biol. 2008 Sep 7;254(1):178-96. doi: 10.1016/j.jtbi.2008.04.011. Epub 2008 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验