1Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, D-24306 Plön, Germany.
2Complex Systems and Networks Research Group, School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK.
Commun Biol. 2019 Apr 23;2:137. doi: 10.1038/s42003-019-0374-x. eCollection 2019.
Population structure can be modeled by evolutionary graphs, which can have a substantial influence on the fate of mutants. Individuals are located on the nodes of these graphs, competing to take over the graph via the links. Applications for this framework range from the ecology of river systems and cancer initiation in colonic crypts to biotechnological search for optimal mutations. In all these applications, both the probability of fixation and the associated time are of interest. We study this problem for all undirected and unweighted graphs up to a certain size. We devise a genetic algorithm to find graphs with high or low fixation probability and short or long fixation time and study their structure searching for common themes. Our work unravels structural properties that maximize or minimize fixation probability and time, which allows us to contribute to a first map of the universe of evolutionary graphs.
人口结构可以通过进化图来建模,进化图对突变体的命运有重大影响。个体位于这些图的节点上,通过链接竞争接管图。该框架的应用范围从河流系统的生态学和结肠隐窝中的癌症发生到生物技术对最佳突变的搜索。在所有这些应用中,固定的概率和相关的时间都很重要。我们研究了这个问题,包括所有大小不超过一定限制的无向和无权重图。我们设计了一种遗传算法来寻找具有高或低固定概率以及短或长固定时间的图,并研究它们的结构,寻找共同的主题。我们的工作揭示了最大化或最小化固定概率和时间的结构特性,这使我们能够为进化图的宇宙图做出贡献。