Li Jian, Liu Tong-Jun, Wang Si, Jebarathinam C, Wang Qin
Opt Express. 2019 Apr 29;27(9):13559-13567. doi: 10.1364/OE.27.013559.
Einstein-Podolsky-Rosen steering is an intermediate relationship between entanglement and Bell nonlocality in the hierarchical structure of quantum nonlocality. To certify the steerability of the entangled state, Mermin steering inequality is supposed to be violated by exceeding the inequality bound of 2. We present an experimental generation of post-selected three-photon entangled states and witness a maximal violation of the inequality up to 3.50±0.05. In the context of observing the maximal violation of Mermin steering inequality which requires measuring on the GHZ state, we derive a tight lower bound on the GHZ-fidelity that can be certified from the Mermin steering inequality violation. From this bound, it follows that the violation of Mermin steering inequality by 3.5 certifies the GHZ-fidelity of 78.66% at least. On the other hand, the above maximal violation of Mermin steering inequality observed in our experimental setup is produced by a post-selected entangled state having the GHZ-fidelity of 87.25 ± 0.34% through quantum tomography.
在量子非定域性的层次结构中,爱因斯坦 - 波多尔斯基 - 罗森(Einstein-Podolsky-Rosen)引导是纠缠与贝尔非定域性之间的一种中间关系。为了证明纠缠态的可引导性,人们认为如果超过不等式界限2,就违反了默明(Mermin)引导不等式。我们展示了一种通过后选择产生三光子纠缠态的实验方法,并见证了该不等式高达3.50±0.05的最大违反情况。在观察到需要在格林伯格 - 霍恩 - 泽林格(GHZ)态上进行测量才能实现默明引导不等式最大违反的背景下,我们推导了一个从默明引导不等式违反情况中能够认证的关于GHZ保真度的严格下限。由此下限可知,默明引导不等式违反3.5至少认证了78.66%的GHZ保真度。另一方面,在我们的实验装置中观察到的上述默明引导不等式的最大违反情况,是由通过量子层析成像得到的具有87.25 ± 0.34%的GHZ保真度的后选择纠缠态产生的。