Ma Hua, Halabi Susan, Liu Aiyi
Merck & Co. Inc., Kenilworth, NJ 07033.
Department of Biostatistics and Bioinformatics, Box 2717, Duke University Medical Center, Durham, NC 27710.
J Probab Stat. 2019;2019. doi: 10.1155/2019/8953530. Epub 2019 Feb 3.
Evaluation of diagnostic assays and predictive performance of biomarkers based on the receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC) are vital in diagnostic and targeted medicine. The partial area under the curve (pAUC) is an alternative metric focusing on a range of practical and clinical relevance of the diagnostic assay. In this article, we adopt and extend the min-max method to the estimation of the pAUC when multiple continuous scaled biomarkers are available and compare the performances of our proposed approach with existing approaches via simulations.
We conducted extensive simulation studies to investigate the performance of different methods for the combination of biomarkers based on their abilities to produce the largest pAUC estimates. Data were generated from different multivariate distributions with equal and unequal variance-covariance matrices. Different shapes of the ROC curves, false positive fraction ranges, and sample size configurations were considered. We obtained the mean and standard deviation of the pAUC estimates through re-substitution and leave-one-pair-out cross validation.
Our results demonstrate that the proposed method provides the largest pAUC estimates under the following three important practical scenarios: (1) multivariate normally distributed data for non-diseased and diseased participants have unequal variance-covariance matrices; or (2) the ROC curves generated from individual biomarker are relative close regardless of the latent normality distributional assumption; or (3) the ROC curves generated from individual biomarker have straight-line shapes.
The proposed method is robust and investigators are encouraged to use this approach in the estimation of the pAUC for many practical scenarios.
基于受试者工作特征(ROC)曲线和ROC曲线下面积(AUC)对诊断检测方法和生物标志物的预测性能进行评估在诊断医学和靶向治疗中至关重要。曲线下部分面积(pAUC)是一种替代指标,关注诊断检测方法在一系列实际和临床相关范围内的表现。在本文中,当有多个连续尺度的生物标志物可用时,我们采用并扩展了最小 - 最大方法来估计pAUC,并通过模拟将我们提出的方法与现有方法的性能进行比较。
我们进行了广泛的模拟研究,以基于不同方法产生最大pAUC估计值的能力来研究生物标志物组合的不同方法的性能。数据来自具有相等和不相等方差 - 协方差矩阵的不同多元分布。考虑了不同形状的ROC曲线、假阳性率范围和样本量配置。我们通过重新代入和留一配对交叉验证获得了pAUC估计值的均值和标准差。
我们的结果表明,在以下三种重要的实际情况下,所提出的方法提供了最大的pAUC估计值:(1)非患病和患病参与者的多元正态分布数据具有不相等的方差 - 协方差矩阵;或者(2)无论潜在的正态分布假设如何,由单个生物标志物生成的ROC曲线相对接近;或者(3)由单个生物标志物生成的ROC曲线具有直线形状。
所提出的方法具有稳健性,鼓励研究人员在许多实际情况下使用这种方法来估计pAUC。