Suppr超能文献

光遗传学功能激活期间的神经血管耦联:局部和远程刺激-反应特征,以及扩布性去极化导致的解耦。

Neurovascular coupling during optogenetic functional activation: Local and remote stimulus-response characteristics, and uncoupling by spreading depression.

机构信息

Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.

Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.

出版信息

J Cereb Blood Flow Metab. 2020 Apr;40(4):808-822. doi: 10.1177/0271678X19845934. Epub 2019 May 7.

Abstract

Neurovascular coupling is a fundamental response that links activity to perfusion. Traditional paradigms of neurovascular coupling utilize somatosensory stimulation to activate the primary sensory cortex through subcortical relays. Therefore, examination of neurovascular coupling in disease models can be confounded if the disease process affects these multisynaptic pathways. Optogenetic stimulation is an alternative to directly activate neurons, bypassing the subcortical relays. We employed minimally invasive optogenetic cortical activation through intact skull in Thy1-channelrhodopsin-2 transgenic mice, examined the blood flow changes using laser speckle imaging, and related these to evoked electrophysiological activity. Our data show that optogenetic activation of barrel cortex triggers intensity- and frequency-dependent hyperemia both locally within the barrel cortex (>50% CBF increase), and remotely within the ipsilateral motor cortex (>30% CBF increase). Intriguingly, activation of the barrel cortex causes a small (∼10%) but reproducible hypoperfusion within the contralateral barrel cortex, electrophysiologically linked to transhemispheric inhibition. Cortical spreading depression, known to cause neurovascular uncoupling, diminishes optogenetic hyperemia by more than 50% for up to an hour despite rapid recovery of evoked electrophysiological activity, recapitulating a unique feature of physiological neurovascular coupling. Altogether, these data establish a minimally invasive paradigm to investigate neurovascular coupling for longitudinal characterization of cerebrovascular pathologies.

摘要

神经血管耦合是一种将活动与灌注联系起来的基本反应。传统的神经血管耦合范式利用躯体感觉刺激通过皮质下中继激活初级感觉皮层。因此,如果疾病过程影响这些多突触通路,那么疾病模型中的神经血管耦合检查可能会受到混淆。光遗传学刺激是一种替代方法,可以直接激活神经元,绕过皮质下中继。我们在 Thy1-通道视紫红质-2 转基因小鼠中通过完整颅骨进行微创光遗传学皮质激活,使用激光散斑成像检查血流变化,并将其与诱发的电生理活动相关联。我们的数据表明,桶状皮层的光遗传学激活引发了强度和频率依赖性的充血,局部在桶状皮层内(>50% 的 CBF 增加),并且在同侧运动皮层内远程发生(>30% 的 CBF 增加)。有趣的是,激活桶状皮层会导致对侧桶状皮层内出现(约 10%)但可重复的低灌注,与跨半球抑制电生理相关联。已知皮质扩散性抑制会导致神经血管解耦,尽管诱发的电生理活动迅速恢复,但光遗传学引起的充血减少了 50%以上,长达一个小时,这再现了生理神经血管耦合的一个独特特征。总的来说,这些数据建立了一种微创范式,用于研究神经血管耦合,以对脑血管病理学进行纵向表征。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验