Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Mol Reprod Dev. 2019 Jun;86(6):686-695. doi: 10.1002/mrd.23147. Epub 2019 May 8.
Extravillous trophoblasts (EVTs) migrate into uterine decidua and induce vascular smooth muscle cell (VSMC) loss through mechanisms thought to involve migration and apoptosis, achieving complete spiral artery remodeling. Long noncoding RNA maternally expressed gene 3 (MEG3) can regulate diverse cellular processes, such as proliferation and migration, and has been discovered highly expressed in human placenta tissues. However, little is known about the role of MEG3 in modulating EVT functions and EVT-induced VSMC loss. In this study, we first examined the location of MEG3 in human first-trimester placenta by in situ hybridization. Then, exogenous upregulation of MEG3 in HTR-8/SVneo cells was performed to investigate the effects of MEG3 on EVT motility and EVT capacity to displace VSMCs. Meanwhile, the molecules mediating EVT-induced VSMC loss, such as tumor necrosis factor-α (TNF-α), Fas ligand (FasL), and tumor necrosis factor-α-related apoptosis-inducing ligand (TRAIL) were detected at transcriptional and translational levels. Finally, VSMCs were cocultured with MEG3-upregulated HTR-8/SVneo to explore the role of MEG3 on EVT-mediated VSMC migration and apoptosis. Results showed that MEG3 was expressed in trophoblasts in placental villi and decidua, and MEG3 enhancement inhibited HTR-8/SVneo migration and invasion. Meanwhile, the displacement of VSMCs by HTR-8/SVneo and the expression of TNF-α, FasL and TRAIL in HTR-8/SVneo were reduced following MEG3 overexpression in HTR-8/SVneo. Furthermore, HTR-8/SVneo with MEG3 upregulation impaired VSMC migration and apoptosis. The PI3K/Akt pathway, which is possibly downstream, was inactivated in MEG3-upregulated HTR-8/SVneo. These findings suggest that MEG3 might be a negative regulator of spiral artery remodeling via suppressing EVT invasion and EVT-mediated VSMC loss.
绒毛外滋养细胞(EVTs)迁移到子宫蜕膜并通过被认为涉及迁移和细胞凋亡的机制诱导血管平滑肌细胞(VSMC)丢失,从而实现完全的螺旋动脉重塑。长链非编码 RNA 母源表达基因 3(MEG3)可以调节多种细胞过程,如增殖和迁移,并且在人胎盘组织中发现高表达。然而,关于 MEG3 调节 EVT 功能和 EVT 诱导的 VSMC 丢失的作用知之甚少。在这项研究中,我们首先通过原位杂交检查了 MEG3 在人早孕胎盘中的位置。然后,通过外源性上调 HTR-8/SVneo 细胞中的 MEG3,研究了 MEG3 对 EVT 运动性和 EVT 置换 VSMC 的能力的影响。同时,在转录和翻译水平检测了介导 EVT 诱导的 VSMC 丢失的分子,如肿瘤坏死因子-α(TNF-α)、Fas 配体(FasL)和肿瘤坏死因子-α相关凋亡诱导配体(TRAIL)。最后,将 VSMC 与 MEG3 上调的 HTR-8/SVneo 共培养,以探讨 MEG3 对 EVT 介导的 VSMC 迁移和凋亡的作用。结果表明,MEG3 在胎盘绒毛和蜕膜的滋养细胞中表达,MEG3 增强抑制了 HTR-8/SVneo 的迁移和侵袭。同时,在 HTR-8/SVneo 中过表达 MEG3 后,HTR-8/SVneo 置换 VSMC 的能力以及 HTR-8/SVneo 中 TNF-α、FasL 和 TRAIL 的表达均降低。此外,上调 MEG3 的 HTR-8/SVneo 损害了 VSMC 的迁移和凋亡。MEG3 上调的 HTR-8/SVneo 中的 PI3K/Akt 通路被失活。这些发现表明,MEG3 可能通过抑制 EVT 侵袭和 EVT 介导的 VSMC 丢失来作为螺旋动脉重塑的负调节剂。