Suppr超能文献

用于人体大腿 MRI 体积自动分割的新型随机框架及其在脊髓损伤个体中的应用。

Novel stochastic framework for automatic segmentation of human thigh MRI volumes and its applications in spinal cord injured individuals.

机构信息

Department of Electrical and Computer Engineering, University of Louisville, Louisville, KY, United States of America.

Department of Bioengineering, University of Louisville, Louisville, KY, United States of America.

出版信息

PLoS One. 2019 May 9;14(5):e0216487. doi: 10.1371/journal.pone.0216487. eCollection 2019.

Abstract

Severe spinal cord injury (SCI) leads to skeletal muscle atrophy and adipose tissue infiltration in the skeletal muscle, which can result in compromised muscle mechanical output and lead to health-related complications. In this study, we developed a novel automatic 3-D approach for volumetric segmentation and quantitative assessment of thigh Magnetic Resonance Imaging (MRI) volumes in individuals with chronic SCI as well as non-disabled individuals. In this framework, subcutaneous adipose tissue, inter-muscular adipose tissue and total muscle tissue are segmented using linear combination of discrete Gaussians algorithm. Also, three thigh muscle groups were segmented utilizing the proposed 3-D Joint Markov Gibbs Random Field model that integrates first order appearance model, spatial information, and shape model to localize the muscle groups. The accuracy of the automatic segmentation method was tested both on SCI (N = 16) and on non-disabled (N = 14) individuals, showing an overall 0.93±0.06 accuracy for adipose tissue and muscle compartments segmentation based on Dice Similarity Coefficient. The proposed framework for muscle compartment segmentation showed an overall higher accuracy compared to ANTs and STAPLE, two previously validated atlas-based segmentation methods. Also, the framework proposed in this study showed similar Dice accuracy and better Hausdorff distance measure to that obtained using DeepMedic Convolutional Neural Network structure, a well-known deep learning network for 3-D medical image segmentation. The automatic segmentation method proposed in this study can provide fast and accurate quantification of adipose and muscle tissues, which have important health and functional implications in the SCI population.

摘要

严重的脊髓损伤 (SCI) 会导致骨骼肌萎缩和脂肪组织浸润到骨骼肌中,这会导致肌肉机械输出受损,并导致与健康相关的并发症。在这项研究中,我们开发了一种新的自动 3-D 方法,用于对慢性 SCI 患者和非残疾个体的大腿磁共振成像 (MRI) 体积进行容积分割和定量评估。在这个框架中,使用离散高斯算法的线性组合来分割皮下脂肪组织、肌肉间脂肪组织和总肌肉组织。此外,还利用提出的 3-D 联合马尔可夫吉布斯随机场模型来分割三个大腿肌肉群,该模型集成了一阶外观模型、空间信息和形状模型,以定位肌肉群。自动分割方法的准确性在 SCI 患者(N=16)和非残疾个体(N=14)上进行了测试,基于 Dice 相似系数,脂肪组织和肌肉组织分割的总体准确性达到 0.93±0.06。与之前验证的基于图谱的分割方法 ANTs 和 STAPLE 相比,提出的肌肉组织分割框架显示出更高的总体准确性。此外,与使用 DeepMedic 卷积神经网络结构(一种用于 3-D 医学图像分割的知名深度学习网络)获得的结果相比,本研究中提出的框架具有相似的 Dice 准确性和更好的 Hausdorff 距离度量,这对于 SCI 人群具有重要的健康和功能意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41d5/6508923/3231b56d521b/pone.0216487.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验