Department of Chemistry , University of Washington , Box 351700, Seattle , Washington 98195 , United States.
Anal Chem. 2019 Jun 4;91(11):7328-7335. doi: 10.1021/acs.analchem.9b01085. Epub 2019 May 22.
Partial modulation via a pulse flow valve operated in the negative pulse mode is developed for high-speed one-dimensional gas chromatography (1D-GC), comprehensive two-dimensional (2D) gas chromatography (GC × GC), and comprehensive three-dimensional gas chromatography (GC). The pulse flow valve readily provides very short modulation periods, P, demonstrated herein at 100, 200, and 300 ms, and holds significant promise to increase the scope and applicability of GC instrumentation. The negative pulse mode creates an extremely narrow, local analyte concentration pulse. The reproducibility of the negative pulse mode is validated in a 1D-GC mode, where a pseudosteady-state analyte stream is modulated, and 8 analytes are baseline resolved (resolution, R ≥ 1.5) in a 200 ms window, providing a peak capacity, n, of 14 at unit resolution ( R = 1.0). Additionally, the pulse width, p, of the pulse flow valve "injection" relationship to peak width-at-base, w, resolution between peaks and detection sensitivity are studied. To demonstrate the applicability to GC × GC, a high-speed separation of a 20-component test mixture of similar, volatile analytes is shown. Analytes were separated on the second-dimension column, D, with w ranging from 7 to 12 ms, providing an exceptional D peak capacity, n, of ∼12 using a modulation period ( P) of 100 ms. Next, a 12 min separation of a diesel sample using a P of 300 ms is presented. The w is ∼4 s, resulting in a n of ∼180, and w is ∼18 ms, resulting in a n of ∼17, thus achieving a n of ∼3000 in this rapid GC × GC diesel separation. Finally, GC with time-of-flight mass spectrometry (TOFMS) detection using a P of 100 ms applied between the D and D columns is reported. Narrow third dimension, D, peaks with w of ∼15 ms were obtained, resulting in a GC peak capacity, n, of ∼35 000 in a 45 min separation.
通过在负压脉冲模式下工作的脉冲流量阀实现部分调制,用于高速一维气相色谱(1D-GC)、全面二维气相色谱(GC×GC)和全面三维气相色谱(GC)。脉冲流量阀很容易提供非常短的调制周期 P,本文中演示的调制周期为 100、200 和 300ms,这为增加 GC 仪器的范围和适用性提供了很大的潜力。负压脉冲模式产生一个极其狭窄的局部分析物浓度脉冲。在 1D-GC 模式下验证了负压脉冲模式的可重复性,在该模式下,调制了伪稳态分析物流,在 200ms 窗口内对 8 种分析物进行基线分离(分辨率,R≥1.5),在单位分辨率(R=1.0)下提供 14 个峰容量,n。此外,研究了脉冲流量阀“注入”与峰宽-at-基的关系、峰间分辨率和检测灵敏度的脉冲宽度,p。为了证明其在 GC×GC 中的适用性,展示了对 20 种类似挥发性分析物的 20 组分测试混合物的高速分离。在第二维柱 D 上分离分析物,w 范围为 7-12ms,在调制周期(P)为 100ms 时,提供了异常高的 D 峰容量,n 约为 12。接下来,展示了使用 P 为 300ms 对柴油样品进行的 12 分钟分离。w 约为 4s,导致 n 约为 180,w 约为 18ms,导致 n 约为 17,从而在这种快速 GC×GC 柴油分离中实现了 n 约为 3000。最后,报告了在 D 和 D 柱之间使用 P 为 100ms 的时间飞行质谱(TOFMS)检测的 GC。获得了宽度约为 15ms 的窄第三维,D 峰,在 45 分钟的分离中得到了约 35000 的 GC 峰容量,n。