Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA.
Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
Science. 2019 May 10;364(6440):566-570. doi: 10.1126/science.aav2572.
Bacteria that oxidize methane to methanol are central to mitigating emissions of methane, a potent greenhouse gas. The nature of the copper active site in the primary metabolic enzyme of these bacteria, particulate methane monooxygenase (pMMO), has been controversial owing to seemingly contradictory biochemical, spectroscopic, and crystallographic results. We present biochemical and electron paramagnetic resonance spectroscopic characterization most consistent with two monocopper sites within pMMO: one in the soluble PmoB subunit at the previously assigned active site (Cu) and one ~2 nanometers away in the membrane-bound PmoC subunit (Cu). On the basis of these results, we propose that a monocopper site is able to catalyze methane oxidation in pMMO.
能够将甲烷氧化为甲醇的细菌对于减少甲烷这种强效温室气体的排放至关重要。由于生物化学、光谱和晶体学结果似乎相互矛盾,这些细菌中主要代谢酶——颗粒态甲烷单加氧酶(pMMO)中的铜活性位点的本质一直存在争议。我们通过生物化学和电子顺磁共振波谱学表征,提出 pMMO 中存在两个单铜位点,这与结果最为一致:一个位于先前指定的活性位点(Cu)的可溶性 PmoB 亚基中,另一个位于膜结合 PmoC 亚基中约 2 纳米处(Cu)。基于这些结果,我们提出一个单铜位点能够催化 pMMO 中的甲烷氧化反应。