Suppr超能文献

局部随机性:示例与应用

Local Randomness: Examples and Application.

作者信息

Fu Honghao, Miller Carl A

机构信息

Joint Institute for Quantum Information and Computer Science, University of Maryland, College Park, MD, 20740.

National Institute of Standards and Technology, 100 Bureau Dr., Gaithersbug, MD 20899, USA.

出版信息

Phys Rev A (Coll Park). 2018;97. doi: 10.1103/PhysRevA.97.032324.

Abstract

When two players achieve a superclassical score at a nonlocal game, their outputs must contain intrinsic randomness. This fact has many useful implications for quantum cryptography. Recently it has been observed (C. Miller, Y. Shi, Quant. Inf. & Comp. 17, pp. 0595-0610, 2017) that such scores also imply the existence of - that is, randomness known to one player but not to the other. This has potential implications for cryptographic tasks between two cooperating but mistrustful players. In the current paper we bring this notion toward practical realization, by offering a near-optimal bound on local randomness for the CHSH game, and also proving the security of a cryptographic application of local randomness (single-bit certified deletion).

摘要

当两名玩家在非定域游戏中取得超经典分数时,他们的输出必定包含内在随机性。这一事实对量子密码学有许多有用的启示。最近有人观察到(C. 米勒、Y. 施,《量子信息与计算》17卷,第0595 - 0610页,2017年),这样的分数也意味着存在——也就是说,一方玩家知道而另一方玩家不知道的随机性。这对于两个相互合作但互不信任的玩家之间的加密任务有潜在影响。在本文中,我们通过给出CHSH游戏局部随机性的近似最优界,并证明局部随机性的一种加密应用(单比特认证删除)的安全性,将这一概念推向实际应用。

相似文献

1
Local Randomness: Examples and Application.
Phys Rev A (Coll Park). 2018;97. doi: 10.1103/PhysRevA.97.032324.
2
Randomness in nonlocal games between mistrustful players.
Quantum Inf Comput. 2017 Jun;17(7):595-610.
3
Tight Analytic Bound on the Trade-Off between Device-Independent Randomness and Nonlocality.
Phys Rev Lett. 2022 Oct 7;129(15):150403. doi: 10.1103/PhysRevLett.129.150403.
4
Efficient Randomness Certification by Quantum Probability Estimation.
Phys Rev Res. 2020;2(1). doi: 10.1103/physrevresearch.2.013016.
5
Quantum cryptography beyond quantum key distribution.
Des Codes Cryptogr. 2016;78(1):351-382. doi: 10.1007/s10623-015-0157-4. Epub 2015 Dec 21.
6
Device-Independent Quantum Key Distribution with Arbitrarily Small Nonlocality.
Phys Rev Lett. 2024 May 24;132(21):210802. doi: 10.1103/PhysRevLett.132.210802.
7
Memristor-based PUF for lightweight cryptographic randomness.
Sci Rep. 2022 May 23;12(1):8633. doi: 10.1038/s41598-022-11240-6.
8
Can observed randomness be certified to be fully intrinsic?
Phys Rev Lett. 2014 Mar 14;112(10):100402. doi: 10.1103/PhysRevLett.112.100402. Epub 2014 Mar 10.
9
Experimental Realization of Device-Independent Quantum Randomness Expansion.
Phys Rev Lett. 2021 Feb 5;126(5):050503. doi: 10.1103/PhysRevLett.126.050503.
10
Device-independent quantum randomness-enhanced zero-knowledge proof.
Proc Natl Acad Sci U S A. 2023 Nov 7;120(45):e2205463120. doi: 10.1073/pnas.2205463120. Epub 2023 Nov 2.

引用本文的文献

1
Generalised Entropy Accumulation.
Commun Math Phys. 2024;405(11):261. doi: 10.1007/s00220-024-05121-4. Epub 2024 Oct 12.

本文引用的文献

1
Randomness in nonlocal games between mistrustful players.
Quantum Inf Comput. 2017 Jun;17(7):595-610.
2
Fully device-independent quantum key distribution.
Phys Rev Lett. 2014 Oct 3;113(14):140501. doi: 10.1103/PhysRevLett.113.140501. Epub 2014 Sep 29.
3
Bounding temporal quantum correlations.
Phys Rev Lett. 2013 Jul 12;111(2):020403. doi: 10.1103/PhysRevLett.111.020403. Epub 2013 Jul 10.
4
Fully distrustful quantum bit commitment and coin flipping.
Phys Rev Lett. 2011 Jun 3;106(22):220501. doi: 10.1103/PhysRevLett.106.220501. Epub 2011 Jun 1.
5
Random numbers certified by Bell's theorem.
Nature. 2010 Apr 15;464(7291):1021-4. doi: 10.1038/nature09008.
6
Quantum cryptography based on Bell's theorem.
Phys Rev Lett. 1991 Aug 5;67(6):661-663. doi: 10.1103/PhysRevLett.67.661.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验