Suppr超能文献

基于拉曼光谱的舌鳞癌深度卷积神经网络分类

Deep convolutional neural networks for tongue squamous cell carcinoma classification using Raman spectroscopy.

机构信息

Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, No. 6 Hongxia Road, Chaoyang District, Beijing 100015, China.

Department of stomatology, Peking Union Medical College Hospital, No. 1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing 100730, China.

出版信息

Photodiagnosis Photodyn Ther. 2019 Jun;26:430-435. doi: 10.1016/j.pdpdt.2019.05.008. Epub 2019 May 10.

Abstract

With deep convolutional neural networks and fiber optic Raman spectroscopy, this study presents a novel classification method that discriminates tongue squamous cell carcinoma (TSCC) from non-tumorous tissue. To achieve this purpose, 24 tissues spectral data were first collected from 12 patients who had undergone a surgical resection due to the tongue squamous cell carcinomas. Then 6 blocks with each block including 1 convolutional layer and 1 max-pooling layer are used to extract the nonlinear feature representations from Raman spectra. The derived features form a representative vector, which is fed into a fully-connected network for performing classification task. Experimental results demonstrated that the proposed method achieved high sensitivity (99.31%) and specificity (94.44%). To show the superiority for the ConvNets classifier, comparison results with the state-of-the-art methods show it had a competitive classification accuracy. Moreover, these promising results may pave the way to apply the deep ConvNets model in the fiber optic Raman instrument for intra-operative evaluation of TSCC resection margins and improve patient survival.

摘要

利用深度卷积神经网络和光纤拉曼光谱技术,本研究提出了一种新的分类方法,用于区分舌鳞状细胞癌(TSCC)和非肿瘤组织。为此,从 12 名因舌鳞状细胞癌接受手术切除的患者中收集了 24 个组织的光谱数据。然后,使用 6 个块,每个块包括 1 个卷积层和 1 个最大池化层,从拉曼光谱中提取非线性特征表示。提取的特征形成一个代表性向量,然后将其输入全连接网络以执行分类任务。实验结果表明,该方法的灵敏度(99.31%)和特异性(94.44%)均较高。为了展示 ConvNets 分类器的优越性,与最先进方法的比较结果表明,该方法具有竞争力的分类准确性。此外,这些有前途的结果可能为将深度 ConvNets 模型应用于光纤拉曼仪器中,用于术中评估 TSCC 切除边界并提高患者生存率铺平道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验