Suppr超能文献

利用深度卷积神经网络将剂量学特征纳入 3DVMAT 剂量分布预测中。

Incorporating dosimetric features into the prediction of 3D VMAT dose distributions using deep convolutional neural network.

机构信息

Department of Radiation Oncology, Stanford University, Stanford, CA, United States of America.

出版信息

Phys Med Biol. 2019 Jun 20;64(12):125017. doi: 10.1088/1361-6560/ab2146.

Abstract

An accurate prediction of achievable dose distribution on a patient specific basis would greatly improve IMRT/VMAT planning in both efficiency and quality. Recently machine learning techniques have been proposed for IMRT dose prediction based on patient's contour information from planning CT. In these existing prediction models geometric/anatomic features were learned for building the dose prediction models and few features that characterize the dosimetric properties of the patients were utilized. In this study we propose a method to incorporate the dosimetric features in the construction of a more reliable dose prediction model based on the deep convolutional neural network (CNN). In addition to the contour information, the dose distribution from a PTV-only plan (i.e. the plan with the best PTV coverage by sacrificing the OARs sparing) is also employed as the model input to build a deep learning based dose prediction model. A database of 60 volumetric modulated arc therapy (VMAT) plans for the prostate cancer patients was used for training. The trained prediction model was then tested on a cohort of ten cases. Dose difference maps, DVHs, dosimetric endpoints and statistical analysis of the sum of absolute residuals (SARs) were used to evaluate the proposed method. Our results showed that the mean SARs for the PTV, bladder and rectum using our method were 0.007  ±  0.003, 0.035  ±  0.032 and 0.067  ±  0.037 respectively, lower than the SARs obtained with the contours-based method, indicating the potential of the proposed approach in accurately predicting dose distribution.

摘要

在个体化基础上准确预测可实现的剂量分布将极大地提高调强放疗/容积旋转调强放疗计划的效率和质量。最近,已经提出了基于患者轮廓信息的机器学习技术来预测调强放疗剂量。在这些现有的预测模型中,基于计划 CT 中的患者轮廓信息来学习几何/解剖特征以构建剂量预测模型,而仅利用了少数能够描述患者剂量特性的特征。在这项研究中,我们提出了一种方法,即将剂量特征纳入到基于深度卷积神经网络(CNN)的更可靠的剂量预测模型的构建中。除了轮廓信息之外,我们还将仅包含前列腺靶区(PTV)的计划(即通过牺牲危及器官来最大程度地覆盖 PTV 的计划)的剂量分布作为模型输入,以构建基于深度学习的剂量预测模型。使用前列腺癌患者的 60 个容积调强弧形治疗(VMAT)计划的数据库进行训练。然后,在 10 个病例的队列上测试训练好的预测模型。使用剂量差异图、剂量体积直方图(DVH)、剂量学终点和绝对残差和(SARs)的统计分析来评估所提出的方法。我们的结果表明,使用我们的方法的 PTV、膀胱和直肠的平均 SARs 分别为 0.007 ± 0.003、0.035 ± 0.032 和 0.067 ± 0.037,低于基于轮廓的方法的 SARs,表明该方法在准确预测剂量分布方面具有潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验