Suppr超能文献

食物衍生的挥发物可增强. 的摄取。

Food-derived volatiles enhance consumption in .

机构信息

Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA

Essig Museum of Entomology, University of California Berkeley, Berkeley, CA 94720, USA.

出版信息

J Exp Biol. 2019 May 29;222(Pt 10):jeb202762. doi: 10.1242/jeb.202762.

Abstract

Insects use multiple sensory modalities when searching for and accepting a food source, in particular odor and taste cues. Food-derived odorants are generally involved in mediating long- and short-range attraction. Taste cues, in contrast, act directly by contact with the food source, promoting the ingestion of nutritious food and the avoidance of toxic substances. It is possible, however, that insects integrate information from these sensory modalities during the process of feeding itself. Here, using a simple feeding assay, we investigated whether odors modulate food consumption in the fruit fly We found that the presence of both single food-derived odorants and complex odor mixtures enhanced consumption of an appetitive food. Feeding enhancement depended on the concentration and the chemical identity of the odorant. Volatile cues alone were sufficient to mediate this effect, as feeding was also increased when animals were prevented from contacting the odor source. Both males and females, including virgin females, increased ingestion in the presence of food-derived volatiles. Moreover, the presence of food-derived odorants significantly increased the consumption of food mixtures containing aversive bitter compounds, suggesting that flies integrate diverse olfactory and gustatory cues to guide feeding decisions, including situations in which animals are confronted with stimuli of opposite valence. Overall, these results show that food-derived olfactory cues directly modulate feeding in , enhancing ingestion.

摘要

昆虫在寻找和接受食物源时会使用多种感觉方式,特别是气味和味觉线索。食物衍生的气味剂通常参与介导长程和短程吸引。相比之下,味觉线索通过与食物源直接接触起作用,促进营养食物的摄入和有毒物质的避免。然而,昆虫在进食过程中可能会整合这些感觉方式的信息。在这里,我们使用一种简单的进食测定法,研究了气味是否会在果蝇的进食过程中调节其食物的摄取。我们发现,单一的食物衍生气味剂和复杂的气味混合物的存在都增强了对开胃食物的摄取。进食增强取决于气味剂的浓度和化学身份。单独的挥发性线索足以介导这种效果,因为当动物被阻止接触气味源时,进食也会增加。雄性和雌性,包括处女雌性,在有食物衍生挥发物存在的情况下增加了摄取量。此外,食物衍生气味剂的存在显著增加了含有厌恶苦味化合物的食物混合物的消耗,这表明果蝇整合了多种嗅觉和味觉线索来指导进食决策,包括动物面对相反效价刺激的情况。总的来说,这些结果表明食物衍生的嗅觉线索直接调节果蝇的进食行为,增强了摄取。

相似文献

1
Food-derived volatiles enhance consumption in .
J Exp Biol. 2019 May 29;222(Pt 10):jeb202762. doi: 10.1242/jeb.202762.
2
Odor source localization in complex visual environments by fruit flies.
J Exp Biol. 2018 Jan 19;221(Pt 2):jeb172023. doi: 10.1242/jeb.172023.
3
Olfactory proxy detection of dietary antioxidants in Drosophila.
Curr Biol. 2015 Feb 16;25(4):455-66. doi: 10.1016/j.cub.2014.11.062. Epub 2015 Jan 22.
4
Modification of CO2 avoidance behaviour in Drosophila by inhibitory odorants.
Nature. 2009 Sep 10;461(7261):277-81. doi: 10.1038/nature08295. Epub 2009 Aug 26.
5
A Higher Brain Circuit for Immediate Integration of Conflicting Sensory Information in Drosophila.
Curr Biol. 2015 Aug 31;25(17):2203-14. doi: 10.1016/j.cub.2015.07.015. Epub 2015 Aug 20.
6
Modulation of feeding behavior by odorant-binding proteins in Drosophila melanogaster.
Chem Senses. 2014 Feb;39(2):125-32. doi: 10.1093/chemse/bjt061. Epub 2013 Dec 3.
7
Artificial selection for odor-guided behavior in Drosophila reveals changes in food consumption.
BMC Genomics. 2017 Nov 13;18(1):867. doi: 10.1186/s12864-017-4233-1.
8
Odor localization requires visual feedback during free flight in Drosophila melanogaster.
J Exp Biol. 2003 Mar;206(Pt 5):843-55. doi: 10.1242/jeb.00175.
9
Processing of Intraoral Olfactory and Gustatory Signals in the Gustatory Cortex of Awake Rats.
J Neurosci. 2017 Jan 11;37(2):244-257. doi: 10.1523/JNEUROSCI.1926-16.2016.
10
Spatial representation of odorant valence in an insect brain.
Cell Rep. 2012 Apr 19;1(4):392-9. doi: 10.1016/j.celrep.2012.03.002. Epub 2012 Apr 20.

引用本文的文献

1
Odors drive feeding through gustatory receptor neurons in .
Elife. 2025 Aug 4;13:RP101440. doi: 10.7554/eLife.101440.
2
Odorant receptors tuned to isothiocyanates in are co-opted and expanded in herbivorous relatives.
bioRxiv. 2025 Mar 10:2024.10.08.617316. doi: 10.1101/2024.10.08.617316.
3
Negative feedback control of hypothalamic feeding circuits by the taste of food.
Neuron. 2024 Oct 9;112(19):3354-3370.e5. doi: 10.1016/j.neuron.2024.07.017. Epub 2024 Aug 16.
4
Taste adaptations associated with host specialization in the specialist Drosophila sechellia.
J Exp Biol. 2023 Feb 1;226(3). doi: 10.1242/jeb.244641. Epub 2023 Feb 6.
6
Olfactory Senses Modulate Food Consumption and Physiology in .
Front Behav Neurosci. 2022 Apr 1;16:788633. doi: 10.3389/fnbeh.2022.788633. eCollection 2022.
7
Multisensory interactions regulate feeding behavior in .
Proc Natl Acad Sci U S A. 2021 Feb 16;118(7). doi: 10.1073/pnas.2004523118.

本文引用的文献

1
Wild African Drosophila melanogaster Are Seasonal Specialists on Marula Fruit.
Curr Biol. 2018 Dec 17;28(24):3960-3968.e3. doi: 10.1016/j.cub.2018.10.033. Epub 2018 Dec 6.
2
Labellar taste organs of Drosophila melanogaster.
J Morphol. 1976 Oct;150(2):327-341. doi: 10.1002/jmor.1051500206.
3
Gustatory Processing in Drosophila melanogaster.
Annu Rev Entomol. 2018 Jan 7;63:15-30. doi: 10.1146/annurev-ento-020117-043331.
4
Parallel memory traces are built after an experience containing aversive and appetitive components in the crab .
Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):E4666-E4675. doi: 10.1073/pnas.1701927114. Epub 2017 May 15.
5
Long-range projection neurons in the taste circuit of .
Elife. 2017 Feb 6;6:e23386. doi: 10.7554/eLife.23386.
6
Starvation-Induced Depotentiation of Bitter Taste in Drosophila.
Curr Biol. 2016 Nov 7;26(21):2854-2861. doi: 10.1016/j.cub.2016.08.028. Epub 2016 Oct 6.
7
Coupled Sensing of Hunger and Thirst Signals Balances Sugar and Water Consumption.
Cell. 2016 Aug 11;166(4):855-866. doi: 10.1016/j.cell.2016.06.046. Epub 2016 Jul 28.
9
Gustatory processing and taste memory in Drosophila.
J Neurogenet. 2016 Jun;30(2):112-21. doi: 10.1080/01677063.2016.1185104.
10
Multimodal interaction in the insect brain.
BMC Neurosci. 2016 Jun 1;17(1):29. doi: 10.1186/s12868-016-0258-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验