Suppr超能文献

利用大数据、内存计算、深度学习和图形处理器实现更智能的交通预测。

Smarter Traffic Prediction Using Big Data, In-Memory Computing, Deep Learning and GPUs.

作者信息

Aqib Muhammad, Mehmood Rashid, Alzahrani Ahmed, Katib Iyad, Albeshri Aiiad, Altowaijri Saleh M

机构信息

Department of Computer Science, FCIT, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia.

High Performance Computing Center, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia.

出版信息

Sensors (Basel). 2019 May 13;19(9):2206. doi: 10.3390/s19092206.

Abstract

Road transportation is the backbone of modern economies, albeit it annually costs 1.25 million deaths and trillions of dollars to the global economy, and damages public health and the environment. Deep learning is among the leading-edge methods used for transportation-related predictions, however, the existing works are in their infancy, and fall short in multiple respects, including the use of datasets with limited sizes and scopes, and insufficient depth of the deep learning studies. This paper provides a novel and comprehensive approach toward large-scale, faster, and real-time traffic prediction by bringing four complementary cutting-edge technologies together: big data, deep learning, in-memory computing, and Graphics Processing Units (GPUs). We trained deep networks using over 11 years of data provided by the California Department of Transportation (Caltrans), the largest dataset that has been used in deep learning studies. Several combinations of the input attributes of the data along with various network configurations of the deep learning models were investigated for training and prediction purposes. The use of the pre-trained model for real-time prediction was explored. The paper contributes novel deep learning models, algorithms, implementation, analytics methodology, and software tool for smart cities, big data, high performance computing, and their convergence.

摘要

公路运输是现代经济的支柱,尽管它每年给全球经济造成125万人死亡和数万亿美元的损失,还损害公众健康和环境。深度学习是用于交通相关预测的前沿方法之一,然而,现有研究尚处于起步阶段,在多个方面存在不足,包括使用规模和范围有限的数据集,以及深度学习研究深度不够。本文通过将大数据、深度学习、内存计算和图形处理单元(GPU)这四项互补的前沿技术结合起来,提供了一种新颖且全面的方法来进行大规模、更快且实时的交通预测。我们使用加利福尼亚州交通运输部(Caltrans)提供的超过11年的数据训练深度网络,这是深度学习研究中使用过的最大数据集。为了训练和预测目的,研究了数据输入属性的几种组合以及深度学习模型的各种网络配置。还探索了使用预训练模型进行实时预测。本文为智慧城市(smart cities)、大数据、高性能计算及其融合贡献了新颖的深度学习模型、算法、实现方式、分析方法和软件工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfd3/6539338/fbd0331b2639/sensors-19-02206-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验