The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
School of Mathematical Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
Nat Commun. 2019 May 14;10(1):2159. doi: 10.1038/s41467-019-09896-2.
Accurate DNA replication is tightly regulated in eukaryotes to ensure genome stability during cell division and is performed by the multi-protein replisome. At the core an AAA+ hetero-hexameric complex, Mcm2-7, together with GINS and Cdc45 form the active replicative helicase Cdc45/Mcm2-7/GINS (CMG). It is not clear how this replicative ring helicase translocates on, and unwinds, DNA. We measure real-time dynamics of purified recombinant Drosophila melanogaster CMG unwinding DNA with single-molecule magnetic tweezers. Our data demonstrates that CMG exhibits a biased random walk, not the expected unidirectional motion. Through building a kinetic model we find CMG may enter up to three paused states rather than unwinding, and should these be prevented, in vivo fork rates would be recovered in vitro. We propose a mechanism in which CMG couples ATP hydrolysis to unwinding by acting as a lazy Brownian ratchet, thus providing quantitative understanding of the central process in eukaryotic DNA replication.
真核生物中精确的 DNA 复制受到严格调控,以确保细胞分裂过程中基因组的稳定性,该过程由多蛋白复制体完成。在核心部位,AAA+ 异六聚体复合物 Mcm2-7 与 GINS 和 Cdc45 一起形成有活性的复制解旋酶 Cdc45/Mcm2-7/GINS(CMG)。目前尚不清楚这种复制环解旋酶如何在 DNA 上移动和解旋。我们使用单分子磁镊实时测量纯化的重组果蝇 CMG 解旋 DNA 的动力学。我们的数据表明,CMG 表现出偏向随机行走,而不是预期的单向运动。通过构建一个动力学模型,我们发现 CMG 可能进入多达三个暂停状态而不是解旋,如果这些状态被阻止,体内叉头速率将在体外恢复。我们提出了一种机制,即 CMG 通过充当懒惰的布朗棘轮将 ATP 水解与解旋偶联起来,从而为真核生物 DNA 复制的核心过程提供定量理解。